AB=.-------------------10分说明:掌握直线.圆.圆锥曲线的参数方程及简单的应用. 查看更多

 

题目列表(包括答案和解析)

以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的极坐标方程为,它与曲线C:α为参数)相交于A,B两点,则|AB|=(      )

A.                 B.               C.             D. 

查看答案和解析>>

如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.

(1)求证:PO⊥平面ABCE;

(2)求二面角E­AP­B的余弦值.

 

查看答案和解析>>

在△ABC中,A=45°,AC=4,AB=,那么cosB=(    )

A.            B.          C.             D.

 

查看答案和解析>>

如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,

 

G为PD中点,E点在AB上,平面PEC⊥平面PDC.

(Ⅰ)求证:AG⊥平面PCD;

(Ⅱ)求证:AG∥平面PEC;

(Ⅲ)求点G到平面PEC的距离.

 

查看答案和解析>>

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:

AB=|x1-x2|=

参考以上定理和结论,解答下列问题:

设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;

(2)当△ABC为等边三角形时,求b2-4ac的值.

 

查看答案和解析>>


同步练习册答案