题目列表(包括答案和解析)
设点
是抛物线![]()
![]()
的焦点,
是抛物线
上的
个不同的点(![]()
).
(1) 当
时,试写出抛物线
上的三个定点
、
、
的坐标,从而使得
;
(2)当
时,若
,
求证:
;
(3) 当
时,某同学对(2)的逆命题,即:
“若
,则
.”
开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);
② 对任意给定的大于3的正整数
,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);
③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).
【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.
【解析】第一问利用抛物线
的焦点为
,设
,
分别过
作抛物线
的准线
的垂线,垂足分别为
.
由抛物线定义得到
第二问设
,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
![]()
![]()
第三问中①取
时,抛物线
的焦点为
,
设
,
分别过![]()
作抛物线
的准线
垂线,垂足分别为![]()
.由抛物线定义得
![]()
![]()
![]()
![]()
,
则
,不妨取
;![]()
;![]()
;![]()
解:(1)抛物线
的焦点为
,设
,
分别过
作抛物线
的准线
的垂线,垂足分别为
.由抛物线定义得
![]()
![]()
因为
,所以
,
故可取![]()
![]()
满足条件.
(2)设
,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
![]()
![]()
又因为![]()
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
时,抛物线
的焦点为
,
设
,
分别过![]()
作抛物线
的准线
垂线,垂足分别为![]()
.由抛物线定义得
![]()
![]()
![]()
![]()
,
则
,不妨取
;![]()
;![]()
;
,
则![]()
![]()
,![]()
![]()
.
故
,
,
,
是一个当
时,该逆命题的一个反例.(反例不唯一)
② 设
,分别过
作
抛物线
的准线
的垂线,垂足分别为
,
由
及抛物线的定义得
,即
.
因为上述表达式与点
的纵坐标无关,所以只要将这
点都取在
轴的上方,则它们的纵坐标都大于零,则
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(说明:本质上只需构造满足条件且
的一组
个不同的点,均为反例.)
③ 补充条件1:“点
的纵坐标
(
)满足
”,即:
“当
时,若
,且点
的纵坐标
(
)满足
,则
”.此命题为真.事实上,设
,
分别过
作抛物线
准线
的垂线,垂足分别为
,由
,
及抛物线的定义得
,即
,则
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命题为真.
补充条件2:“点
与点![]()
为偶数,
关于
轴对称”,即:
“当
时,若
,且点
与点![]()
为偶数,
关于
轴对称,则
”.此命题为真.(证略)
如图,
是△
的重心,
、
分别是边
、
上的动点,且
、
、
三点共线.
(1)设
,将
用
、
、
表示;
(2)设
,
,证明:
是定值;
(3)记△
与△
的面积分别为
、
.求
的取值范围.
(提示:![]()
![]()
【解析】第一问中利用(1)![]()
![]()
第二问中,由(1),得
;①
另一方面,∵
是△
的重心,
∴![]()
而
、
不共线,∴由①、②,得![]()
第三问中,![]()
由点
、
的定义知
,
,
且
时,
;
时,
.此时,均有
.
时,
.此时,均有
.
以下证明:
,结合作差法得到。
解:(1)![]()
.
(2)一方面,由(1),得
;①
另一方面,∵
是△
的重心,
∴
. ②
而
、
不共线,∴由①、②,得
解之,得
,∴
(定值).
(3)
.
由点
、
的定义知
,
,
且
时,
;
时,
.此时,均有
.
时,
.此时,均有
.
以下证明:
.(法一)由(2)知
,
∵
,∴
.
∵
,∴
.
∴
的取值范围![]()
,
,
为常数,离心率为
的双曲线
:
上的动点
到两焦点的距离之和的最小值为
,抛物线
:![]()
的焦点与双曲线
的一顶点重合。(Ⅰ)求抛物线
的方程;(Ⅱ)过直线
:
(
为负常数)上任意一点
向抛物线
引两条切线,切点分别为
、
,坐标原点
恒在以
为直径的圆内,求实数
的取值范围。
【解析】第一问中利用由已知易得双曲线焦距为
,离心率为
,则长轴长为2,故双曲线的上顶点为
,所以抛物线
的方程![]()
第二问中,
为
,
,
,
故直线
的方程为
,即
,
所以
,同理可得:![]()
借助于根与系数的关系得到即
,
是方程
的两个不同的根,所以![]()
由已知易得
,即![]()
解:(Ⅰ)由已知易得双曲线焦距为
,离心率为
,则长轴长为2,故双曲线的上顶点为
,所以抛物线
的方程![]()
(Ⅱ)设
为
,
,
,
故直线
的方程为
,即
,
所以
,同理可得:
,
即
,
是方程
的两个不同的根,所以![]()
由已知易得
,即![]()
在证明
为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数
满足增函数的定义是小前提;④函数
满足增函数的定义是大前提;其中正确的命题是 ( )
(A)①②
(B)②④
(C)①③
(D)②③
| 13 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com