题目列表(包括答案和解析)
(Ⅰ)在平面直角坐标系中,已知某点
,直线
.求证:点P到直线l的距离![]()
(Ⅱ)已知抛物线C:
的焦点为F,点
为坐标原点,过P的直线l与抛物线C相交于A,B两点,若向量
在向量
上的投影为n,且
,求直线l的方程。
在平面直角坐标系中,定义
为两点
之间的“折线距离”,在这个定义下,给出下列命题:
①到原点的“折线距离”等于1 的点的集合是一个正方形;
②到原点的“折线距离”等于1 的点的集合是一个圆;
③到
两点的“折线距离”之和为4的点的集合是面积为6的六边形;
④到
两点的“折线距离”差的绝对值为1的点的集合是两条平行线;
其中正确的命题是 。(写出所有正确命题的序号)
在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足
,
,M点的轨迹为曲线C。
(Ⅰ)求C的方程;
(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。
在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足
,
,M点的轨迹为曲线C。
(1)求C的方程;
(2)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com