16.已知ABCD是矩形.AD=4.AB=2.E.F分别是线段AB.BC的中点.PA⊥平面ABCD.(1)求证:PF⊥FD,(2)问棱PA上是否存在点G.使EG//平面PFD.若存在.确定点G的位置.若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

(本题满分14分) 已知函数是定义域上的奇函数,且;函数上的增函数,且对任意,总有

(Ⅰ)函数的解析式;

(Ⅱ)判断函数上的单调性,并加以证明;

(Ⅲ)若,求实数的取值范围.

 

查看答案和解析>>

(本题满分14分) 已知正四棱锥PABCD中,底面是边长为2 的正方形,高为M为线段PC的中点.

(Ⅰ) 求证:PA∥平面MDB

(Ⅱ) NAP的中点,求CN与平面MBD所成角的正切值.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为.M为线段PC的中点.

(Ⅰ) 求证:PA∥平面MDB;

(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.

 

 

 

 

 

 

查看答案和解析>>

(本题满分14分

已知椭圆的离心率为,以原点为圆心,

椭圆的短半轴长为半径的圆与直线相切.

⑴求椭圆C的方程;

⑵设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆

于另一点,求直线的斜率的取值范围;

⑶在⑵的条件下,证明直线轴相交于定点.

 

查看答案和解析>>

一、填空题:本大题共14小题,每小题5分,计70分.

1.第二象限  2. 3   3.Π   4.   5. __ 6. 2  7.

8.   9. 10  10.向右平移  11. 3.5  12.①④   13.  14.①③

二、解答题:本大题共6小题,计90分.

15.解:(1)

,即

(2)

,即的取值范围是

16.(Ⅰ)证明:连结AF,在矩形ABCD中,因为AD=4,AB=2,点F是BC的中点,所以∠AFB=∠DFC=45°.所以∠AFD=90°,即AF⊥FD.又PA⊥平面ABCD,所以PA⊥FD.  

所以FD⊥平面PAF.  故PF⊥FD. 

(Ⅱ)过E作EH//FD交AD于H,则EH//平面PFD,且 AH=AD.  再过H作HG//PD交PA于G,则GH//平面PFD,且 AG=PA.  所以平面EHG//平面PFD,则EG//平面PFD,从而点G满足AG=PA. 

17.解:(1)由于⊙M与∠BOA的两边均相切,故M到OA及OB的距离均为⊙M的半

径,则M在∠BOA的平分线上,

    同理,N也在∠BOA的平分线上,即O,M,N

三点共线,且OMN为∠BOA的平分线,

∵M的坐标为,∴M到轴的距离为1,即

⊙M的半径为1,

则⊙M的方程为

  设⊙N的半径为,其与轴的的切点为C,连接MA、MC,

  由Rt△OAM∽Rt△OCN可知,OM:ON=MA:NC,即

  则OC=,则⊙N的方程为

(2)由对称性可知,所求的弦长等于过A点直线MN的平行线被⊙截得的弦

的长度,此弦的方程是,即:

圆心N到该直线的距离d=,则弦长=

另解:求得B(),再得过B与MN平行的直线方程,圆心N到该直线的距离=,则弦长=

(也可以直接求A点或B点到直线MN的距离,进而求得弦长)

18.解(1)由题意的中垂线方程分别为

于是圆心坐标为…………………………………4分

=,即   所以

于是 ,所以  即 ………………8分

(2)假设相切, 则,……………………………………………………10分

,………13分这与矛盾.

故直线不能与圆相切. ………………………………………………16分

19.解(Ⅰ)∵

         ∴                               

,令,得,列表如下:

2

0

递减

极小值

递增

处取得极小值

的最小值为.              

,∵,∴,又,∴.                                        

(Ⅱ)证明由(Ⅰ)知,的最小值是正数,∴对一切,恒有从而当时,恒有,故上是增函数.

(Ⅲ)证明由(Ⅱ)知:上是增函数,

     ∴当时,,   又,                     

,即,∴

故当时,恒有

20.解:(1)数列{an}的前n项和

…2分

    …………4分

是正项等比数列,,  …………6分

公比,数列         …………8分

(2)解法一:

              …………11分

,当,       …………13分

故存在正整数M,使得对一切M的最小值为2.…16分

(2)解法二:,11分

函数……13分

对于

故存在正整数M,使得对一切恒成立,M的最小值为2.……16分

 


同步练习册答案