直线:.学科网 查看更多

 

题目列表(包括答案和解析)

椭圆G:的两个焦点为是椭圆上一点,且满.[来源:学#科#网]

(1)求离心率的取值范围;

(2)当离心率取得最小值时,点到椭圆上点的最远距离为

①求此时椭圆G的方程;

②设斜率为的直线与椭圆G相交于不同两点的中点,问:

 

查看答案和解析>>

已知函数,给出下列四个命题:

①若

的最小正周期是

在区间上是增函数;[来源:学科网]

的图象关于直线对称;

⑤当时,的值域为

其中正确的命题为                            (    )

       A.①②④     B.③④⑤     C.②③       D.③④

查看答案和解析>>

给出下列四个命题:

    ①若集合A,B满足,则

    ②给定命题,若“”为真,则“”为真;

    ③设,则;[来源:学科网]

    ④若直线与直线垂直,则.

其中正确命题的个数是            (    )

    A.1    B.2    C.3    D.4

查看答案和解析>>

如图为双曲线的两焦点,以为直径的圆与双曲线交于是圆轴的交点,连接交于,且的中点,学科网

(1)当时,求双曲线的方程;学科网                                                                                                                                                                    

(2)试证:对任意的正实数,双曲线的离心率为常数.

查看答案和解析>>

已知函数,给出下列四个命题:学科网

     ①若,则;   ②的最小正周期是学科网

     ③在区间上是增函数;  ④的图象关于直线对称学科网

     A.①②④     B.①③     C.②③     D.③④学科网

查看答案和解析>>

或7                   ………………………………14分

16.(本小题满分14分)

(1)证明:E、P分别为AC、A′C的中点,

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………5分

(2) 证明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………9分

(3)证明:在△A′EC中,P为A′C的中点,∴EP⊥A′C,

  在△A′AC中,EP∥A′A,∴A′A⊥A′C

      由(2)知:BC⊥平面A′EC   又A′A平面A′EC

      ∴BC⊥AA′

      ∴A′A⊥平面A′BC                   …………………………………………14分

                    …………………………………………15分

(本题也可以利用特征三角形中的有关数据直接求得)

18.(本小题满分15分)

(1)延长BD、CE交于A,则AD=,AE=2

     则S△ADE= S△BDE= S△BCE=

      ∵S△APQ=,∴

      ∴             …………………………………………7分

(2)

          =?

…………………………………………12分

    当

           

…………………………………………15分

(3)

设上式为 ,假设取正实数,则?

时,递减;

递增. ……………………………………12分

                

    

∴不存在正整数,使得

                  …………………………………………16分

显然成立             ……………………………………12分

时,

使不等式成立的自然数n恰有4个的正整数p值为3

                          ……………………………………………16分

 

 

 

 

 

 

 

泰州市2008~2009学年度第二学期期初联考

高三数学试题参考答案

附加题部分

度单位.(1),由

所以

为圆的直角坐标方程.  ……………………………………3分

同理为圆的直角坐标方程. ……………………………………6分

(2)由      

相减得过交点的直线的直角坐标方程为. …………………………10分

D.证明:(1)因为

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,……………………………………8分

    三式相加即得……………………………10分

22.(必做题)(本小题满分10分)

解:(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件的, 则其概率为                …………………………………………4分

    答:恰好选到1个曾经参加过数学研究性学习活动的同学的概率为

(1)

              ……………………………………3分

(2)平面BDD1的一个法向量为

设平面BFC1的法向量为

得平面BFC1的一个法向量

∴所求的余弦值为                     ……………………………………6分

(3)设

,由

时,

时,∴   ……………………………………10分

 


同步练习册答案