题目列表(包括答案和解析)
命题“若
,![]()
,![]()
,则![]()
.”可以如下证明:构造函数
,则
,因为对一切
,恒有
,所以
,故得![]()
.
试解决下列问题:
(1)若
,
,![]()
,![]()
,求证![]()
;
(2)试将上述命题推广到n个实数,并证明你的结论.
如图
⊥平面
,
⊥
,过
做![]()
的垂线,垂足为
,过
做
的垂线,垂足为
,求证
⊥
。以下是证明过程:
要证
⊥
只需证
⊥平面![]()
只需证
⊥
(因为
⊥
)
只需证
⊥平面![]()
只需证 ① (因为
⊥
)
只需证
⊥平面![]()
只需证 ② (因为
⊥
)
由只需证
⊥平面
可知上式成立
所以
⊥![]()
把证明过程补充完整① ②
![]()
已知函数
.
(Ⅰ)讨论函数
的单调性;
(Ⅱ)设
,证明:对任意
,
.
1.选修4-1:几何证明选讲
如图,
的角平分线
的延长线交它的外接圆于点![]()
(Ⅰ)证明:
∽△
;
(Ⅱ)若
的面积
,求
的大小.
证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.
因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因为△ABE∽△ADC,所以
,即AB·AC=AD·AE.
又S=
AB·ACsin∠BAC,且S=
AD·AE,故AB·ACsin∠BAC=AD·AE.
则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.
证明:假设___________,则∠B是直角或钝角.
(1)当∠B是直角时,因为∠C是直角,所以∠B+∠C=180°,与三角形的内角和定理矛盾.
(2)当∠B为钝角时,∠B+∠C>180°,同理矛盾.故___________,原命题成立.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com