同理可得 查看更多

 

题目列表(包括答案和解析)

同学们,在学习了轴对称变换后我们经常会遇到三角形中的“折叠”问题.我们通常会考虑到折叠前与折叠后的图形全等,并利用全等的性质,即对应角相等,对应边相等来研究解决数学中的“折叠”问题.
(1)如图①,把△ABC纸片沿DE折叠,当点A落在△ABC内部时,我们不仅可以发现AE=A′E,AD=
 
,而且我们还可以通过发现∠AED=∠A′ED,∠ADE=∠
 
,∠A=∠A′,从而求得∠1+∠2=2∠A.
(2)如图②,当点A落在△ABC外部时,我们发现∠2=∠DFA+∠
 
,∠DFA=∠1+∠
 
,那么(1)中的∠1+∠2=2∠A在这里还成立吗?如成立,请说明理由.如不成立,请写出成立的式子并说明理由.
(3)已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,请你模仿图①,图②,画出相应的示意图并求出△CDE的周长.精英家教网

查看答案和解析>>

同时掷两个质地均匀的骰子,观察向上的一面的点数.
(1)用表格或树状图表示所有可能出现的结果,并求两个骰子点数之和为7的概率;
(2)小王通过反复试验后得出猜想:两个骰子点数之和为6的概率与两个骰子点数之和为8的概率相等.你认为小王的猜想是否正确?说明理由.

查看答案和解析>>

同学们,你会求数轴上两点间的距离吗?
例如:数轴上,3和5两数在数轴上所对的两点之间的距离可理解为|3-5|=2或理解为5-3=2,5与-2两数在数轴上所对的两点之间的距离可理解为|(-5)-2|=7或|5-(-2)|=7.
试探索:
(1)求7与-7两数在数轴上所对的两点之间的距离=
14
14

(2)找出所有符合条件的整数x,使得|x+3|+|x-1|=4这样的整数是
±1、0、-2、-3
±1、0、-2、-3

(3)由以上探索猜想对于任何有理数x,|x-3|+|x+6|是否有最小值?如果有,写出最小值,如果没有,说明理由.

查看答案和解析>>

同学们都知道,|3-(-1)|表示3与-1之差的绝对值,实际上也可理解为3与-1两数在数轴上所对的两点之间的距离.试探索:
(1)求|3-(-1)|=
4
4

(2)找出所有符合条件的整数x,使得|x-3|+|x-(-1)|=4,这样的整数是
-1,0,1,2,3
-1,0,1,2,3

查看答案和解析>>

同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解5与-2两数轴上所对的两点之间的距离,试探索:
(1)求|5-(-2)|=
7
7

(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是
-5,-4,-3,-2,-1,0,1,2
-5,-4,-3,-2,-1,0,1,2

查看答案和解析>>


同步练习册答案