(Ⅱ)设bn=(n∈N*).Sn=b1+b2+-+bn.是否存在最大的整数t.使得任意的n均有Sn>总成立?若存在.求出t,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

数列{an}中,a1=8,a4=2且满足an+2=2an+1-an  n∈N

(1)求数列{an}的通项公式;

(2)设Sn=|a1|+|a2|+…+|an|,求sn;

(3)设bn= ( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整数m,使得对任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,请说明理由。

查看答案和解析>>

数列{an}中,a1=8,a4=2且满足an+2=2an+1-an  n∈N

(1)求数列{an}的通项公式;

(2)设Sn=|a1|+|a2|+…+|an|,求sn;

(3)设bn= ( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整数m,使得对任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,请说明理由。

查看答案和解析>>

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列.

(Ⅰ)求a的值及数列{bn}的通项公式;

(Ⅱ)设数列{logan}的前n项和为Tn.求使Tn>bn的最小正整数n.

 

查看答案和解析>>

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列.
(Ⅰ)求a的值及数列{bn}的通项公式;
(Ⅱ)设数列{logan}的前n项和为Tn.求使Tn>bn的最小正整数n.

查看答案和解析>>

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列.
(Ⅰ)求a的值及数列{bn}的通项公式;
(Ⅱ)设数列{logan}的前n项和为Tn.求使Tn>bn的最小正整数n.

查看答案和解析>>


同步练习册答案