的直线交曲线E于不同的两点G.H. 查看更多

 

题目列表(包括答案和解析)

已知定点A(1,0),定直线l:x=5,动点M(x,y)
(1)若M到点A的距离与M到直线l的距离之比为
5
5
,试求M的轨迹曲线C1的方程;
(2)若曲线C2是以C1的焦点为顶点,且以C1的顶点为焦点,试求曲线C2的方程;
(3)是否存在过点F(
5
,0)的直线m,使其与曲线C2交得弦|PQ|长度为8呢?若存在,则求出直线m的方程;若不存在,试说明理由.

查看答案和解析>>

若曲线C上的点到直线的距离比它到点F的距离大1,

(1)求曲线C的方程。

(2)过点F(1,0)作倾斜角为的直线交曲线C于A、B两点,求AB的长

(3)过点F(1,0)作斜率为k 的直线交曲线C于M、N 两点,求证:

      为定值

 

查看答案和解析>>

已知定点A(1,0),定直线l:x=5,动点M(x,y)
(1)若M到点A的距离与M到直线l的距离之比为
5
5
,试求M的轨迹曲线C1的方程;
(2)若曲线C2是以C1的焦点为顶点,且以C1的顶点为焦点,试求曲线C2的方程;
(3)是否存在过点F(
5
,0)的直线m,使其与曲线C2交得弦|PQ|长度为8呢?若存在,则求出直线m的方程;若不存在,试说明理由.

查看答案和解析>>

已知定点A(1,0),定直线l:x=5,动点M(x,y)
(1)若M到点A的距离与M到直线l的距离之比为,试求M的轨迹曲线C1的方程;
(2)若曲线C2是以C1的焦点为顶点,且以C1的顶点为焦点,试求曲线C2的方程;
(3)是否存在过点F(,0)的直线m,使其与曲线C2交得弦|PQ|长度为8呢?
若存在,则求出直线m的方程;若不存在,试说明理由.

查看答案和解析>>

若曲线C上的点到直线的距离比它到点F的距离大1,
(1)求曲线C的方程。
(2)过点F(1,0)作倾斜角为的直线交曲线C于A、B两点,求AB的长
(3)过点F(1,0)作斜率为k 的直线交曲线C于M、N 两点,求证:
 为定值

查看答案和解析>>

一.选择题

序号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

B

D

D

C

A

A

C

B

D

A

 

二填空题

13. 2或8;        14. ;            15.;           16..

三.解答题

17.解:(Ⅰ)

………………………………………………………………4分

…………………………6分

(Ⅱ) …………………………………………………8分

…………………………………………………………………………10分

………………………………………………………………………………12分

 

18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4. ……………………………2分

.………………………………………………………………4分

则V=.     ……………………………………………………………… 6分

(Ⅱ)∵PA=CA,F为PC的中点,∴AF⊥PC.            ……………………………………8分

∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.

∵E为PD中点,F为PC中点,∴EF∥CD.则EF⊥PC.     ………………………………10分

∵AF∩EF=F,∴PC⊥平面AEF.………………………………………………………………12分

 

19.设第一个匣子里的三把钥匙为A,B,C,第二个匣子里的三把钥匙为a,b,c(设A,a能打开所有门,B只能打开第一道门,b只能打开第二道门,C,c不能打开任何一道门)

(Ⅰ)第一道门打不开的概率为;……………………………………………………………5分

(Ⅱ)能进入第二道门的情况有Aa,Ab,Ac,Ba,Bb,而二把钥匙的不同情况有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9种,故能进入第二道门的概率为……………………………………………………………12分

 

20.(Ⅰ)依题

 

…………………………………………………3分

为等差数列,a1=1,d=2

………………………………………………………………………………………………5分

(Ⅱ)设公比为q,则由b1b2b3=8,bn>0…………………………………………………6分

成等差数列

………………………………………………………………………………………8分

…………………………………………………………………………………10分

……………………………………………………………………12分

 

21解:(Ⅰ)依题PN为AM的中垂线

…………………………………………………2分

又C(-1,0),A(1,0)

所以N的轨迹E为椭圆,C、A为其焦点…………………………………………………………4分

a=,c=1,所以为所求………………………………………………………5分

(Ⅱ)设直线的方程为:y=k(x-1),代入椭圆E的方程:x2+2y2=2得:

(1+2k2)x2-4k2x+2k2-2=0………………(1)

设G(x1,y1)、H(x2,y2),则x1,x2是(1)的两个根.

…………………………………………………………7分

依题

………………………………………………………9分

解得:………………………………………………………………………12分

 

22.解法(一):

   时,……①

时,恒成立,

时,①式化为……②

时,①式化为……③…………………………………………………5分

,则…………………………7分

所以

故由②,由③………………………………………………………………………13分

综上时,恒成立.………………………………………………14分

解法(二):

   时,……①

时,,不合题意…………………………………………………2分

恒成立

上为减函数,

,矛盾,…………………………………………………………………………………5分

=

   若,故在[-1,1]内,

,得,矛盾.

依题意,  解得

综上为所求.……………………………………………………………………………14分

 

 

 

 

 

 

 


同步练习册答案