题目列表(包括答案和解析)
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n![]()
),其中
为正实数.
(Ⅰ)用
表示xn+1;
(Ⅱ)若a1=4,记an=lg
,证明数列{
}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中xn为正实数.
(1)用xn表示xn+1;
(2)若x1=4,记an=lg
,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
(本小题满分13分)已知数列{an}的前n项和为Sn,满足关系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)
(1)当a1为何值时,数列{an}是等比数列;
(2)在(1)的条件下,设数列{an}的公比为f(t),作数列{bn}使b1=1,bn=f(bn-1)(n=2,
3,4,…),求bn;
(3)在(2)条件下,如果对一切n∈N+,不等式bn+bn+1<恒成立,求实数c的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com