题目列表(包括答案和解析)
C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:
和直线
,
(1)求圆O和直线
的直角坐标方程;(2)当
时,求直线
与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数![]()
和
,不等式
恒成立,试求实数
的取值范围.
C
[解析] 由基本不等式,得ab≤
=
=
-ab,所以ab≤
,故B错;
+
=
=
≥4,故A错;由基本不等式得
≤
=
,即
+
≤
,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×
=
,故D错.故选C.
.定义域为R的函数
满足
,且当
时,
,则当
时,
的最小值为( )
(A)
(B)
(C)
(D)![]()
.过点
作圆
的弦,其中弦长为整数的共有 ( )
A.16条 B. 17条 C. 32条 D. 34条
一、选择题:
1.解析:B.由
且
能够推出
;反之,由
只能推出
或
,而不能推出
且
.故“
”是“
且
”的必要不充分条件,故选B.
评析:有关充要条件的判定问题,概念性较强,进行判断时,必须紧扣概念.一方面,要正确理解充要条件本身的概念,进行双向推理,准确判断;另一方面,还要注意根据具体问题所涉及到的数学概念来思考.本题中,弄清并集和交集概念中“或”与“且”的关系显得很重要.
|