题目列表(包括答案和解析)
| 6 |
| 7 |
| 1 |
| 3 |
(本小题16分)
已知数列
满足:
(
为常数),数列
中,
。
(1)求
;
(2)证明:数列
为等差数列;
(3)求证:数列
中存在三项构成等比数列时,
为有理数。
已知
是等差数列,
是公比为
的等比数列,
,记
为数列
的前
项和,
(1)若
是大于
的正整数
,求证:
;
(2)若
是某一正整数
,求证:
是整数,且数列
中每一项都是数列
中的项;
(3)是否存在这样的正数
,使等比数列
中有三项成等差数列?若存在,写出一个
的值,并加以说明;若不存在,请说明理由;
数列
前
项和为
,首项为
,满足![]()
(1)求数列
的通项公式;
(2)是否存在
,使
(其中
是与自然数
无关的常数),若存在,求出
与
的值,若不存在,说明理由;
(3)求证:
为有理数的充要条件是数列
中存在三项构成等比数列.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com