1) 证明对任意≥, 查看更多

 

题目列表(包括答案和解析)

对任意x∈R,给定区间[k-
1
2
,k+
1
2
](k∈z),设函数f(x)表示实数x与x的给定区间内
整数之差的绝对值.
(1)当x∈[-
1
2
1
2
]
时,求出f(x)的解析式;当x∈[k-
1
2
,k+
1
2
](k∈z)时,写出用绝对值符号表示的f(x)的解析式;
(2)求f(
4
3
),f(-
4
3
)
的值,判断函数f(x)(x∈R)的奇偶性,并证明你的结论;
(3)当e-
1
2
<a<1
时,求方程f(x)-loga
x
=0
的实根.(要求说明理由e-
1
2
1
2

查看答案和解析>>

对任意x∈R,给定区间[k-
1
2
,k+
1
2
](k∈Z),设函数f(x)表示实数x与x的给定区间内整数之差的绝对值.
(1)写出f(x)的解析式;
(2)设函数g(x)=loga
x
,(e-
1
2
<a<1),试证明:当x>1时,f(x)>g(x);当0<x<1时,f(x)<g(x);
(3)求方程f(x)-loga
x
=0的实根,(e-
1
2
<a<1).

查看答案和解析>>

对任意,给定区间,设函数表示实数的给定区间内整数之差的绝对值.

YCY 

 
   (1)当的解析式;当Z)时,写出用绝对值符号表示的的解析式,并说明理由;

   (2)判断函数R)的奇偶性,并证明你的结论;

   (3)求方程的实根.(要求说明理由)

查看答案和解析>>

对任意x∈R,给定区间[k-,k+](k∈z),设函数f(x)表示实数x与x的给定区间内
整数之差的绝对值.
(1)当时,求出f(x)的解析式;当x∈[k-,k+](k∈z)时,写出用绝对值符号表示的f(x)的解析式;
(2)求的值,判断函数f(x)(x∈R)的奇偶性,并证明你的结论;
(3)当时,求方程的实根.(要求说明理由

查看答案和解析>>

对任意x∈R,给定区间[k-,k+](k∈z),设函数f(x)表示实数x与x的给定区间内
整数之差的绝对值.
(1)当时,求出f(x)的解析式;当x∈[k-,k+](k∈z)时,写出用绝对值符号表示的f(x)的解析式;
(2)求的值,判断函数f(x)(x∈R)的奇偶性,并证明你的结论;
(3)当时,求方程的实根.(要求说明理由

查看答案和解析>>


同步练习册答案