11.已知.则的值等于: . 查看更多

 

题目列表(包括答案和解析)

已知关于x的方程
sinxx
=k(k∈(0,1))
在(-3π,0)∪(0,3π)内有且仅有4个根,从小到大依次为x1,x2,x3,x4
(1)求证:x4=tanx4.
(2)是否存在常数k,使得x2,x3,x4成等差数列?若存在求出k的值,否则说明理由.

查看答案和解析>>

已知命题P:0<c<1,Q:关于x的不等式x2+2x+2c>0的解集为R.如果P和Q有且仅有一个正确,则c得取值范围是
 

查看答案和解析>>

已知命题:“在等差数(an)中,若4a2+a10+a(  )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为
 

查看答案和解析>>

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
d2
d1
=
2
2

(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
a2
c
、点F(-c,0)、曲线C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断
 
 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

已知函数f(x)=ax+lnx,a∈R.
(1)讨论y=f(x)的单调性;(2)若定义在区间D上的函数y=g(x)对于区间D上的任意两个值x1、x2总有不等式
1
2
[g(x1)+g(x2)]≥g(
x1+x2
2
)
成立,则称函数y=g(x)为区间D上的“凹函数”.
试证明:当a=-1时,g(x)=|f(x)|+
1
x
为“凹函数”.

查看答案和解析>>

一、选择题:本小题共8小题,每小题5分,共40分.

题号

1

2

3

4

5

6

7

8

答案

A

B

D

B

D

B

B

C

二、填空题:本小题9―12题必答,13、14、15小题中选答2题,若全答只计前两题得分,共30分.

9., f(x)<m;  10.90 ; 11.3 ;12.

13.垂直; 14. ; 15.

 

解答提示:

2.解:设等轴双曲线为x2-y2=a2(a>0),

∵焦点到渐近线距离为,∴a=

3.解:∵    ∴

4.解:只有命题②正确。

5.解:有2男2女和三男一女两种情况,

2400种.

6.解:,∴r=3,9时,该项为有理项

,∴

7.解:由正弦定理得

由余弦定理有

8.解: 可行域:的面积为4,圆x2+y2=1的面积为,

    由几何概型计算公式得:P=

10.平均每月注射了疫苗的鸡的数量为万只。

11.解:=3。

12.解:∵

      ∴

      又

      ∴,夹角等于

13.解:垂直。两直线分别过点,前两点和后两点连线显然垂直。

法二:两直线化为普通方程是

其斜率乘积,故两直线垂直。

14.解:,应有

15.解:由圆的相交弦定理知

由圆的切割线定理知

三、解答题:

16.解:(1) ,        ……………3分

f(x)  。                     ………6分

(2)由(1)知 ,       …… 9分

的图像向右平移个单位,得到的图像,

其图像关于原点对称,                              …………… 11分

故m=  。                                         ……………12分

17.解:(1)

    又,  ………………………………………………2分

    又的等比中项为2,

    而,  ………………………………4分

      , ……………………………6分

   (2),   

   为首项,-1为公差的等差数列。 ………………………9分

   

    ;当;当

    最大。 …………………………12分

18.解:(1)这位挑战者有两种情况能过关:

①第三个对,前两个一对一错,得20+10+0=30分,       ……… ………1分

②三个题目均答对,得10+10+20=40分,                ……… ………2分

其概率分别为,            ……… ………3分

            ,                ……… ………4分

这位挑战者过关的概率为

。        ……… ………5分

(2)如果三个题目均答错,得0+0+(-10)=-10分,

如果前两个中一对一错,第三个错,得10+0+(-10)=0分;  …… ………6分

 前两个错,第三个对,得0+0+20=20分;

如果前两个对,第三个错,得10+10+(-10)=10分;      ……… ………7分

的可能取值为:-10,0,10,20,30,40.                 ………….8分

 ,    ……… ………9分

                            ………………10分

                             ……… ………11分

                             ……… ………12分

又由(1),

的概率分布为

-10

0

10

20

30

40

                                                    ………………13分

根据的概率分布,可得的期望,

                                                         ………14分

19.解:(1),∴,     ∴2a2=3b2      ……….2分

      ∵直线l:与圆x2+y2=b2相切,

=b,∴b=,b2=2,                                                             …….3分  

∴a2=3.  ∴椭圆C1的方程是          ………….  4分

(2)∵|MP|=|MF2|,

∴动点M到定直线l1:x=-1的距离等于它的定点F2(1,0)的距离. …5分

∴动点M的轨迹是以l1为准线,F2为焦点的抛物线,                                                 ………….6分

,p=2 ,                                    ………….7分

 ∴点M的轨迹C2的方程为                  .………….8分           

(3)由(1)知A(1,2),,y2≠2,①

       则,              ………….10分

    又因为      ,

       整理得,                ………….12分

则此方程有解,

       ∴解得,      ………….13分

       又检验条件①:∵y2=2时y0=-6,不符合题意。

       ∴点C的纵坐标y0的取值范围是       ………….14分

20.解法一:(向量法):

过点

⊥平面

⊥平面

又在中,

如图,以为原点,建立空间直角坐标系.       ………….1分

又在中,

又在中,

                        ………….3分

(1)证明:∵

         ∴

         ∴

         ∴

 又

⊥平面                               ………….6分

又在中,分别是上的动点,

∴不论为何值,都有

⊥平面

平面

不论为何值,总有平面⊥平面           ………….8分

(2)∵,∴,

,∴

又∵ ,     

是平面的法向量,则         .………….10分

,∵=(0,1,0),

,                            ………….12分

    ∵ 是平面的法向量,平面与平面所成的二面角为

(不合题意,舍去),

         故当平面与平面所成的二面角的大小为.…….14分

(2)解法二:∵,∴ ,

设E(a,b,c),则

∴a=1+,b=0,c=, E(1+,0, ),

)。                       

其余同解法一

(2)解法三:设是平面的法向量,则

        ∵ 

        ∴

        ∴

又在中,

又在中,

    又,且

        ……………10

                               …………12分

其余同解法一

解法四:(传统法):

(1)证明:∵⊥平面

                                    ………….1分

又在中,

                                    ………….2分

⊥平面                               ………….3分

又在中,分别是上的动点,

                                      ………….4分

⊥平面                                ………….5分

平面

∴不论为何值,总有平面⊥平面.        ………….6分

(2)解:作BQ∥CD,则BQ⊥平面

∴BQ⊥BC,BQ⊥BE,

又BQ与CD、EF共面,∴平面与∩平面BQ,

∴∠CBE平面与平面所成的二面角的平面角,为,∴

①      ………….9分

   又

   ∴