(1)在平面直角坐标系中画出有向线段(有向线段与轴的长度单位相同)..与轴的正半轴的夹角是.且与轴的正半轴的夹角是, 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,将坐标是A (1,2),B(2,3),C(4,1)的点用线段依次连接起来形成一个三角形.
(1)在下列坐标系中画出这个三角形,这个三角形的面积是
 

(2)若将上述各点的横坐标保持不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连接起来,在坐标
系中作出△A′B′C′,并说明所得的△A′B′C′与原三角形相比有什么变化?精英家教网
(3)作出△A′B′C′向左平移5个单位得到的△A″B″C″.

查看答案和解析>>

在平面直角坐标系中,将坐标是A (1,2),B(2,3),C(4,1)的点用线段依次连接起来形成一个三角形.
(1)在下列坐标系中画出这个三角形,这个三角形的面积是______.
(2)若将上述各点的横坐标保持不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连接起来,在坐标
系中作出△A′B′C′,并说明所得的△A′B′C′与原三角形相比有什么变化?
(3)作出△A′B′C′向左平移5个单位得到的△A″B″C″.

查看答案和解析>>

在平面直角坐标系中,将坐标是A (1,2),B(2,3),C(4,1)的点用线段依次连接起来形成一个三角形.
(1)在下列坐标系中画出这个三角形,这个三角形的面积是          
(2)若将上述各点的横坐标保持不变,纵坐标分别乘以﹣1,再将所得的各个点用线段依次连接起来,在坐标系中作出△AˊBˊCˊ,并说明所得的△AˊBˊCˊ与原三角形相比有什么变化?
(3)作出△AˊBˊCˊ向左平移5个单位得到的△A〞B〞C〞.

查看答案和解析>>

如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA:OB=1:5,OB=OC,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;
(3)设点E是抛物线上异于点A,B的一个动点,过点E作x轴的平行线交抛物线于另一点F.以EF为直径画⊙Q,则在点E的运动过程中,是否存在与x轴相切的⊙Q?若存在,求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA:OB=1:5,OB=OC,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;
(3)设点E是抛物线上异于点A,B的一个动点,过点E作x轴的平行线交抛物线于另一点F.以EF为直径画⊙Q,则在点E的运动过程中,是否存在与x轴相切的⊙Q?若存在,求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

 

一、1.A  2. C  3. D  4. D  5. B  6.D  7. A  8. A  9. B  10. B  11. D  12. B  13. C  14. D  15. A

二、16.±3  17. 18.  19.矩形、圆  20.2.5┩  21.15π

三、22.解原式=  

23、解设原方程可化为。解得    

  解得    解得 

经检验    是原方程的根。   

24、∵AC∥BD  ∴∠C=∠D   ∠CAO=∠DBO   AO=BO  ∴△AOC≌△BOD 

∴CO=DO  ∵E、F分别是OC、OD的中点  ∴OF=OD=OC=OE 。

由AO=BO、EO=FO ∴四边表AFBE是平等四边形。

25、解由图象可行的反比例函数设经过A(2,18)

∴函数表达式为:=。 

26、(1)设该船厂运输x年后开始盈利,72x-(120+40x)?0,x?

因而该船运输4年后开始盈利。(2)(万元)。 

四、27、(1)不合格  (2)80名 

(3)合理,理由,利用样本的优秀人数来诂计总体的优秀人数。 

五、28、作AD⊥BC交BC延长线于D,设AD=,在Rt△ACD中,∠CAD=30°

∴CD=。在Rt△ABD中,∠ABD=30°∴BD=   

∵BC=8      ∴有触礁危险。 

六29、解:(1)△。证明:

(2)理由:

,即。 

七、30.解(1)等腰直角三角形   (2)当J 等边三角形。

证明;连结是⊙的切线

 

  又  是等边三角形。(3)等腰三角形。 

八 31.(1)作图略   (2)  

九 32.(1)1140≤45x+75(20-x)≤1170 (2)11≤x≤12

∵x为正整数∴当x=11时,20-11=9当=12时20-12=8

∴生产甲产品11件,生产乙产品9件或 生产甲产品12件,生产乙产品8件。

十 33.解:(1)∵DQ//AP,∴当AP=DQ时,四边形APQD是平行四边形。

此时,3t=8-t。解得t=2(s)。即当t为2s时,四边形APQD是平行四边形。

(2)∵⊙P和⊙Q的半径都是2cm,∴当PQ=4cm时,⊙P和⊙Q外切。

而当PQ=4cm时,如果PQ//AD,那么四边形APQD是平行四边形。

①当 四边形APQD是平行四边形时,由(1)得t=2(s)。

② 当 四边形APQD是等腰梯形时,∠A=∠APQ。

∵在等腰梯形ABCD中,∠A=∠B,∴∠APQ=∠B。∴PQ//BC。

∴四边形PBCQ平行四边形 。此时,CQ=PB。∴t=12-3t。解得t3(s)。

综上,当t为2s或3s时,⊙P和⊙Q相切。             

 

 


同步练习册答案