(Ⅱ)当椭圆的离心率时.求椭圆长轴长的取值范围. 查看更多

 

题目列表(包括答案和解析)

椭圆E的中心在原点O,焦点在x轴上,离心率e=
2
3
,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:
CA
BC
(λ≥2).
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
与直线x+y-1=0相交于P、Q两点,且
OP
OQ
(O为坐标原点).
(Ⅰ)求证:
1
a2
+
1
b2
等于定值;
(Ⅱ)当椭圆的离心率e∈[
3
3
2
2
]
时,求椭圆长轴长的取值范围.

查看答案和解析>>

椭圆的离心率为,两焦点分别为,点M是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.

(1)求椭圆C以及圆O的方程;

(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.

 

查看答案和解析>>

已知当椭圆的长轴、短轴、焦距依次成等比时称椭圆为“黄金椭圆”,请用类比的性质定义“黄金双曲线”,并求“黄金双曲线”的离心率为(      )

A.               B.               C.          D.

 

查看答案和解析>>

已知当椭圆的长轴、短轴、焦距依次成等比时称椭圆为“黄金椭圆”,请用类比的性质定义“黄金双曲线”,并求“黄金双曲线”的离心率为(      )

A.B.C.D.

查看答案和解析>>


同步练习册答案