所以数列的通项公式为, --------4分 查看更多

 

题目列表(包括答案和解析)

已知正项数列的前n项和满足:

(1)求数列的通项和前n项和

(2)求数列的前n项和

(3)证明:不等式  对任意的都成立.

【解析】第一问中,由于所以

两式作差,然后得到

从而得到结论

第二问中,利用裂项求和的思想得到结论。

第三问中,

       

结合放缩法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正项数列,∴           ∴ 

又n=1时,

   ∴数列是以1为首项,2为公差的等差数列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  对任意的都成立.

 

查看答案和解析>>

(本大题18分)

阅读下面所给材料:已知数列{an},a1=2,an=3an–1+2,求数列的通项an

解:令an=an–1=x,则有x=3x+2,所以x= –1,故原递推式an=3an–1+2可转化为:

an+1=3(an–1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列。

根据上述材料所给出提示,解答下列问题:

已知数列{an},a1=1,an=3an–1+4,

(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;

(2)若记Sn=,求Sn;

(3)若数列{bn}满足:b1=10,bn+1=100,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn

查看答案和解析>>

(本题满分16分,第1小题 4分,第2小题6分,第3小题6分)

   设函数,数列满足

⑴求数列的通项公式;

⑵设,若恒成立,求实数的取值范围;

⑶是否存在以为首项,公比为的数列,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由.

查看答案和解析>>

(本题满分16分,第1小题 4分,第2小题6分,第3小题6分)

  设函数,数列满足

⑴求数列的通项公式;

⑵设,若恒成立,求实数的取值范围;

⑶是否存在以为首项,公比为的数列,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由.

查看答案和解析>>

(本题满分16分,第1小题4分,第2小题6分,第3小题6分)

       设函数,数列满足∈N*,且≥2)。

   (1)求数列的通项公式;

   (2)设,若∈N*恒成立,求实数的取值范围;

   (3)是否存在以为首项,公比为)的数列,使得数列中的每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由。

查看答案和解析>>


同步练习册答案