与函数图象有两个交点时k的取值范围,应用导数画出的大致图象. 查看更多

 

题目列表(包括答案和解析)

已知二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,且有f(c)=0,当0<x<c时,恒有f(x)>0.
(1)(文)当a=1,数学公式时,求出不等式f(x)<0的解;
(2)(理)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若f(0)=1,且f(x)≤m2-2km+1,对所有x∈[0,c],k∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,且有f(c)=0,当0<x<c时,恒有f(x)>0.
(1)(文)当a=1,c=
1
2
时,求出不等式f(x)<0的解;
(2)(理)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若f(0)=1,且f(x)≤m2-2km+1,对所有x∈[0,c],k∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,且有f(c)=0,当0<x<c时,恒有f(x)>0.
(1)(文)当a=1,时,求出不等式f(x)<0的解;
(2)(理)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若f(0)=1,且f(x)≤m2-2km+1,对所有x∈[0,c],k∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

已知一元二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.
(1)当a=1,c=
12
时,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若不等式m2-2km+1+b+ac≥0对所有k∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

已知一元二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.
(1)当a=1,c=
1
2
时,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若不等式m2-2km+1+b+ac≥0对所有k∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>


同步练习册答案