A. B. -1 C. 0 D.4 查看更多

 

题目列表(包括答案和解析)

A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17)这四个点是否共面
 
(共面或不共面).

查看答案和解析>>

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

精英家教网A(选修4-1:几何证明选讲)
如图,AB是⊙O的直径,C,F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.
求证:DE2=DB•DA.
B(选修4-2:矩阵与变换)
求矩阵
21
12
的特征值及对应的特征向量.
C(选修4-4:坐标系与参数方程)
已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是
x=-
3
5
t+2
y=
4
5
t
(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.
D(选修4-5:不等式选讲)
已知m>0,a,b∈R,求证:(
a+mb
1+m
)2
a2+mb2
1+m

查看答案和解析>>

精英家教网A.如图,四边形ABCD内接于⊙O,弧AB=弧AD,过A点的切线交CB的延长线于E点.
求证:AB2=BE•CD.
B.已知矩阵M
2-3
1-1
所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
C.已知圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)将圆的极坐标方程化为直角坐标方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

0<a<
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数的(  )

查看答案和解析>>

一、选择题

1.B    2.C    3.C    4.C    5.B    6.A

7.A    8.D    9.B    10.D   

二、填空题

11.86;1.6;12.1/6   13.( 4,8)   14.108   15.(1),(2),(3)

三、解答题

16.解:(1)由已知得 解得.设数列的公比为

,可得.又,可知

解得. 由题意得. 

故数列的通项为.……………………………6分

   (2)由于   由(1)得 

   

=  ……………..13分

17.(1)∵=a, AB=2a,BC=a,

E为的中点。

DE⊥CE……(2分)

又∵∴DE⊥EB  ,而                      

∴DE⊥平面BCE…(6分)

(2) 取DC的中点F,则EF⊥平面BCD,作FH⊥BD于H,连EH,则∠EHF就是二面角E-BD-C的一个平面角。……………………(8分)

由题意得  EF=a,在Rt△ 中,…………(10分)

∠EHF=.……………………………………………(13分)

18.解:由已知

(1)若。若A是直角,则k=-2;若B是直角,则

k(2-k)+3=0, k=-1,k=3;若C是直角,则2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率为

(2)若且k≠.区间长度L=6.若B是钝角,则-k(2-k)-3<0, -1<k<3,L′=4. △ABC中B是钝角的概率

k(2-k)+3=0, k=-1,k=3;若C是直角,则2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率为.

求△ABC是直角三角形的概率.

19.解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,

长半轴为2的椭圆.它的短半轴

故曲线C的方程为.????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)设,其坐标满足

消去y并整理得

.??????????????????????????????????????????????????????????????????????? 6分

,即.而

于是

所以时,,故.???????????????????????????????????????????????????????? 8分

时,

所以.   13分

20.解:(1) 

函数有一个零点;当时,,函数有两个零点。…….3分

   (2)假设存在,由①知抛物线的对称轴为x=-1,∴ 

由②知对,都有

又因为恒成立, 

,即,即

时,,其顶点为(-1,0)满足条件①,又,都有,满足条件②。

∴存在,使同时满足条件①、②。…..8分

   (3)令,则

内必有一个实根。即,使成立。….13分

21.(1)1;    (2)

 

(2)(1)设M=,则有==

所以   解得,所以M=.…………………………5分

(2)任取直线l上一点P(x,y)经矩阵M变换后为点P’(x’,y’).

因为,所以又m:

所以直线l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………7分

不等式证明选讲)若,证明

柯西不等式一步可得

 

www.ks5u.com

 

 


同步练习册答案