若.证明 . 查看更多

 

题目列表(包括答案和解析)

在A、B、C、D四小题中只能选做2题,每小题10,共计20分。请在答题卡指定区域作答。解答应写出文字说明、证明过程或演算步骤。

A、选修4-1:几何证明选讲

   如图,已知梯形ABCD为圆内接四边形,AD//BC,过C作该圆的切线,交AD的延长线于E,求证:ΔABC∽ΔEDC。

B、选修4-2:矩形与变换

已知 为矩阵属于λ的一个特征向量,求实数a,λ的值及A2。

C、选修4-4:坐标系与参数方程

   在平面直角坐标系xoy中,曲线C的参数方程为(α为参数),曲线D的参数方程为,(t为参数)。若曲线C、D有公共点,求实数m的取值范围。

D、选修4-5:不等式选讲

   已知a,b都是正实数,且ab=2。求证:(1+2a)(1+b)≥9。

 

查看答案和解析>>

选做题:请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分

22.(本小题满分10分)选修4—1几何证明选讲

如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。

   (I)求证:DE是⊙O的切线;

   (II)若的值.

 

 

23.(本小题满分10分)选修4—2坐标系与参数方程

        设直角坐标系原点与极坐标极点重合, x轴正半轴与极轴重合,若已知曲线C的极坐标方程为,点F1、F2为其左、右焦点,直线l的参数方程为

   (I)求直线l的普通方程和曲线C的直角坐标方程;

   (II)求曲线C上的动点P到直线l的最大距离。

24.(本小题满分10分)选修4—5不等式选讲

        对于任意的实数恒成立,记实数M的最大值是m

   (1)求m的值;

   (2)解不等式

 

查看答案和解析>>

选做题:请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分

22.(本小题满分10分)选修4—1几何证明选讲

如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。

   (I)求证:DE是⊙O的切线;

   (II)若的值.

 

23.(本小题满分10分)选修4—2坐标系与参数方程

        设直角坐标系原点与极坐标极点重合, x轴正半轴与极轴重合,若已知曲线C的极坐标方程为,点F1、F2为其左、右焦点,直线l的参数方程为

   (I)求直线l的普通方程和曲线C的直角坐标方程;

   (II)求曲线C上的动点P到直线l的最大距离。

24.(本小题满分10分)选修4—5不等式选讲

        对于任意的实数恒成立,记实数M的最大值是m

   (1)求m的值;

   (2)解不等式

 

查看答案和解析>>

选做题:请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分
22.(本小题满分10分)选修4—1几何证明选讲
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。
(I)求证:DE是⊙O的切线;
(II)若的值.

23.(本小题满分10分)选修4—2坐标系与参数方程
设直角坐标系原点与极坐标极点重合,x轴正半轴与极轴重合,若已知曲线C的极坐标方程为,点F1、F2为其左、右焦点,直线l的参数方程为
(I)求直线l的普通方程和曲线C的直角坐标方程;
(II)求曲线C上的动点P到直线l的最大距离。
24.(本小题满分10分)选修4—5不等式选讲
对于任意的实数恒成立,记实数M的最大值是m
(1)求m的值;
(2)解不等式

查看答案和解析>>

选做题:请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分
22.(本小题满分10分)选修4—1几何证明选讲
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。
(I)求证:DE是⊙O的切线;
(II)若的值.

23.(本小题满分10分)选修4—2坐标系与参数方程
设直角坐标系原点与极坐标极点重合,x轴正半轴与极轴重合,若已知曲线C的极坐标方程为,点F1、F2为其左、右焦点,直线l的参数方程为
(I)求直线l的普通方程和曲线C的直角坐标方程;
(II)求曲线C上的动点P到直线l的最大距离。
24.(本小题满分10分)选修4—5不等式选讲
对于任意的实数恒成立,记实数M的最大值是m
(1)求m的值;
(2)解不等式

查看答案和解析>>

一、选择题

1.B    2.C    3.C    4.C    5.B    6.A

7.A    8.D    9.B    10.D   

二、填空题

11.86;1.6;12.1/6   13.( 4,8)   14.108   15.(1),(2),(3)

三、解答题

16.解:(1)由已知得 解得.设数列的公比为

,可得.又,可知

解得. 由题意得. 

故数列的通项为.……………………………6分

   (2)由于   由(1)得 

   

=  ……………..13分

17.(1)∵=a, AB=2a,BC=a,

E为的中点。

DE⊥CE……(2分)

又∵∴DE⊥EB  ,而                      

∴DE⊥平面BCE…(6分)

(2) 取DC的中点F,则EF⊥平面BCD,作FH⊥BD于H,连EH,则∠EHF就是二面角E-BD-C的一个平面角。……………………(8分)

由题意得  EF=a,在Rt△ 中,…………(10分)

∠EHF=.……………………………………………(13分)

18.解:由已知

(1)若。若A是直角,则k=-2;若B是直角,则

k(2-k)+3=0, k=-1,k=3;若C是直角,则2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率为

(2)若且k≠.区间长度L=6.若B是钝角,则-k(2-k)-3<0, -1<k<3,L′=4. △ABC中B是钝角的概率

k(2-k)+3=0, k=-1,k=3;若C是直角,则2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率为.

求△ABC是直角三角形的概率.

19.解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,

长半轴为2的椭圆.它的短半轴

故曲线C的方程为.????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)设,其坐标满足

消去y并整理得

.??????????????????????????????????????????????????????????????????????? 6分

,即.而

于是

所以时,,故.???????????????????????????????????????????????????????? 8分

时,

所以.   13分

20.解:(1) 

函数有一个零点;当时,,函数有两个零点。…….3分

   (2)假设存在,由①知抛物线的对称轴为x=-1,∴ 

由②知对,都有

又因为恒成立, 

,即,即

时,,其顶点为(-1,0)满足条件①,又,都有,满足条件②。

∴存在,使同时满足条件①、②。…..8分

   (3)令,则

内必有一个实根。即,使成立。….13分

21.(1)1;    (2)

 

(2)(1)设M=,则有==

所以   解得,所以M=.…………………………5分

(2)任取直线l上一点P(x,y)经矩阵M变换后为点P’(x’,y’).

因为,所以又m:

所以直线l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………7分

不等式证明选讲)若,证明

柯西不等式一步可得

 

www.ks5u.com

 

 


同步练习册答案