所以. 查看更多

 

题目列表(包括答案和解析)

 

.(本小题9分)某家公司每月生产两种布料A和B,所有原料是三种不同颜色的羊毛,下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量

羊毛颜色

每匹需要 / kg

供应量/ kg

布料A

布料B

4

4

1400

绿

6

3

1800

2

6

1800

已知生产每匹布料A、B的利润分别为120元、80元。那么如何安排生产才能够产生最大的利润?最大的利润是多少?

 

查看答案和解析>>

(2013•佛山一模)
组别 候车时间 人数
[0,5) 2
[5,10) 6
[10,15) 4
[15,20) 2
[20,25] 1
城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:min):
(1)求这15名乘客的平均候车时间;
(2)估计这60名乘客中候车时间少于10分钟的人数;
(3)若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.

查看答案和解析>>

(2012•江苏一模)平面直角坐标系xoy中,直线x-y+1=0截以原点O为圆心的圆所得的弦长为
6

(1)求圆O的方程;
(2)若直线l与圆O切于第一象限,且与坐标轴交于D,E,当DE长最小时,求直线l的方程;
(3)设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

(2013•泉州模拟)对于30个互异的实数,可以排成m行n列的矩形数阵,右图所示的5行6列的矩形数阵就是其中之一.
将30个互异的实数排成m行n列的矩形数阵后,把每行中最大的数选出,记为a1,a2,…am,并设其中最小的数为a;把每列中最小的数选出,记为b1,b2,…bn,并设其中最大的数为b.
两位同学通过各自的探究,分别得出两个结论如下:
①a和b必相等;        ②a和b可能相等;
③a可能大于b;        ④b可能大于a.
以上四个结论中,正确结论的序号是
②③
②③
(请写出所有正确结论的序号).

查看答案和解析>>

(2012•太原模拟)某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如图1
所示统计表和如图2所示各年龄段人数频率分布直方图:


请完成以下问题:
(1)补全频率直方图,并求n,a,p的值
(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取6人参加网络时尚达人大赛,其中选取2人作为领队,求选取的2名领队中年龄在[40,45)岁的概率.

查看答案和解析>>


同步练习册答案