即在棱上存在点..使得平面. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;

(2)当为何值时,在棱上存在点,使平面

 

查看答案和解析>>

(本小题满分12分)

如图所示的几何体是由以正三角形为底面的直棱柱

被平面所截而得. 的中点.

(Ⅰ)当时,求平面与平面的夹角的余弦值;

(Ⅱ)当为何值时,在棱上存在点,使平面

 

 

 

查看答案和解析>>

如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;

(2)当为何值时,在棱上存在点,使平面

查看答案和解析>>

如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;

(2)当为何值时,在棱上存在点,使平面

查看答案和解析>>

(坐标系与参数方程选做题) 如图,AB是半径为1的圆的一条直径,C是此圆上任意一点,作射线AC,在AC上存在点P,使得AP•AC=1,以A为极点,射线AB为极轴建立极坐标系,则圆的方程为
ρ=2cosθ
ρ=2cosθ
、动点P的轨迹方程为
ρcosθ=
1
2
ρcosθ=
1
2

查看答案和解析>>


同步练习册答案