A. B. C.1 D.5 (理)若随机变量x 的分布列如下表.则Ex 的值为( )x0123452x3x7x2x3xx 查看更多

 

题目列表(包括答案和解析)

(理)若随机变量的分布列如下表,则E的值为(   )

0

1

2

3

4

5

P

2x

3x

7x

2x

3x

x

  A.        B.        C.       D.

查看答案和解析>>

(2012•吉林二模)户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,对本单位的50名员工进行了问卷调查,得到了如下列联表:
喜欢户外运动 不喜欢户外运动 合计
男性 5
女性 10
合计 50
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是
3
5

(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由;
(Ⅲ)经进一步调查发现,在喜欢户外运动的10名女性员工中,有4人还喜欢瑜伽.若从喜欢户外运动的10位女性员工中任选3人,记ξ表示抽到喜欢瑜伽的人数,求ξ的分布列和数学期望.
下面的临界值表仅供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad+bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用右侧茎叶图表示这两组数据
(1)A、B二人预赛成绩的中位数分别是多少?
(2)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;
(3)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.

查看答案和解析>>

有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用右侧茎叶图表示这两组数据
(1)A、B二人预赛成绩的中位数分别是多少?
(2)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;
(3)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.

查看答案和解析>>

(本小题满分12分)有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用茎叶图表示这两组数据如下:

(1)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;

(2)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.

 

查看答案和解析>>

  1.D 2.C 3.D 4.(理)D (文)A 5.C 6.B 7.C 8.(理)C (文)A 9.(理)B (文)D 10.A 11.C 12.D

  13.-2 14.6∶2∶ 15.(文)7 (理)a≥3 16.(文)a≥3(理)1

  17.解析:(1)

  解不等式

  得

  ∴ fx)的单调增区间为

  (2)∵ ], ∴ 

  ∴ 当时,

  ∵ 3+a=4,∴ a=1,此时

  18.解析:由已知得

  ∴ 

  欲使夹角为钝角,需

  得 

  设

  ∴ ∴ 

  ∴ ,此时

  即时,向量的夹角为p .

  ∴ 夹角为钝角时,t的取值范围是(-7,).

  19.解析:(甲)取AD的中点G,连结VGCG

  (1)∵ △ADV为正三角形,∴ VGAD

  又平面VAD⊥平面ABCDAD为交线,

  ∴ VG⊥平面ABCD,则∠VCGCV与平面ABCD所成的角.

  设ADa,则

  在Rt△GDC中,

  

  在Rt△VGC中,

  ∴ 

  即VC与平面ABCD成30°.

  (2)连结GF,则

  而 

  在△GFC中,. ∴ GFFC

  连结VF,由VG⊥平面ABCDVFFC,则∠VFG即为二面角V-FC-D的平面角.

  在Rt△VFG中,

  ∴ ∠VFG=45°. 二面角V-FC-B的度数为135°.

  (3)设B到平面VFC的距离为h,当V到平面ABCD的距离是3时,即VG=3.

  此时

  ∴ 

    

  ∵ 

  ∴ 

  ∴ 

  ∴  即B到面VCF的距离为

  (乙)以D为原点,DADC所在的直线分别为xyz轴,建立空间直角坐标系,设正方体棱长为a,则D(0,0,0),Aa,0,0),Baa,0),(0,0,a),Eaa),Fa,0),Ga,0).

  (1),-a),,0,

  ∵ 

  ∴ 

  (2)a),

  ∴ 

  ∴ 

  ∵ ,∴ 平面AEG

  (3)由a),=(aa),

  ∴ 

  20.解析:依题意,公寓2002年底建成,2003年开始使用.

  (1)设公寓投入使用后n年可偿还全部贷款,则公寓每年收费总额为1000×80(元)=800000(元)=80万元,扣除18万元,可偿还贷款62万元.

  依题意有 

  化简得

  ∴ 

  两边取对数整理得.∴ 取n=12(年).

  ∴ 到2014年底可全部还清贷款.

  (2)设每生和每年的最低收费标准为x元,因到2010年底公寓共使用了8年,

  依题意有

  化简得

  ∴ (元)

  故每生每年的最低收费标准为992元.

  21.解析:(1)

  而 

  ∴ 

  ∴ {}是首项为,公差为1的等差数列.

  (2)依题意有,而

  ∴ 

  对于函数,在x>3.5时,y>0,,在(3.5,)上为减函数.

  故当n=4时,取最大值3

  而函数x<3.5时,y<0,,在(,3.5)上也为减函数.

  故当n=3时,取最小值,=-1.

  (3)

  ∴ 

  22.解析:(1)双曲线C的右准线l的方程为:x,两条渐近线方程为:

  ∴ 两交点坐标为 

  ∵ △PFQ为等边三角形,则有(如图).

  ∴ ,即

  解得 c=2a.∴ 

  (2)由(1)得双曲线C的方程为把

  把代入得

  依题意  ∴ ,且

  ∴ 双曲线C被直线yaxb截得的弦长为

  

  

  ∵ 

  ∴ 

  整理得 

  ∴ 

  ∴ 双曲线C的方程为:

  (文)(1)设B点的坐标为(0,),则C点坐标为(0,+2)(-3≤≤1),

  则BC边的垂直平分线为y+1                  ①

                           ②

  由①②消去,得

  ∵ ,∴ 

  故所求的△ABC外心的轨迹方程为:

  (2)将代入

  由,得

  所以方程①在区间,2有两个实根.

  设,则方程③在,2上有两个不等实根的充要条件是:

  

  之得

  ∵ 

  ∴ 由弦长公式,得

  又原点到直线l的距离为

  ∴ 

  ∵ ,∴ 

  ∴ 当,即时,

 


同步练习册答案