解法二:如图9-2过点P作FP∥AC , ∴ ∠PAC = ∠APF . ∵ AC∥BD , ∴FP∥BD . 查看更多

 

题目列表(包括答案和解析)

解:(1)点C的坐标为.

∵ 点A、B的坐标分别为

            ∴ 可设过ABC三点的抛物线的解析式为.   

            将代入抛物线的解析式,得.

            ∴ 过ABC三点的抛物线的解析式为.

(2)可得抛物线的对称轴为,顶点D的坐标为   

,设抛物线的对称轴与x轴的交点为G.

直线BC的解析式为.

设点P的坐标为.

解法一:如图8,作OPAD交直线BC于点P

连结AP,作PMx轴于点M.

OPAD

∴ ∠POM=∠GAD,tan∠POM=tan∠GAD.

  ∴ ,即.

  解得.  经检验是原方程的解.

  此时点P的坐标为.

但此时OMGA.

  ∵

      ∴ OPAD,即四边形的对边OPAD平行但不相等,

      ∴ 直线BC上不存在符合条件的点P. - - - - - - - - - - - - - - - - - - - - - 6分

            解法二:如图9,取OA的中点E,作点D关于点E的对称点P,作PNx轴于

N. 则∠PEO=∠DEAPE=DE.

可得△PEN≌△DEG

,可得E点的坐标为.

NE=EG= ON=OE-NE=NP=DG=.

∴ 点P的坐标为.∵ x=时,

∴ 点P不在直线BC上.

                   ∴ 直线BC上不存在符合条件的点P .

 


(3)的取值范围是.

查看答案和解析>>

(1)我们知道三角形的内角和是180°,请猜测四边形的内角和是多少度?
解:四边形的四个内角和等于
360
360
°
(2)利用下面两种方法验证你的猜想,请说明理由:
解法一:如图1,连接四边形ABCD的对角线AC.
解法二:如图2,延长CB、DA相交于点E.

查看答案和解析>>

(1)我们知道三角形的内角和是180°,请猜测四边形的内角和是多少度?
解:四边形的四个内角和等于______°
(2)利用下面两种方法验证你的猜想,请说明理由:
解法一:如图1,连接四边形ABCD的对角线AC.
解法二:如图2,延长CB、DA相交于点E.

查看答案和解析>>

明珠大剧场座落在聊城东昌湖西岸,其上部为能够旋转的拱形钢结构,并且具有开启、闭合功能,全国独-无二,如图1.舞台顶部横剖面拱形可近似看作抛物线的一部分,其中舞台高度1.15米,台口高度13.5米,台口宽度29米,如图2.以ED所在直线为x轴,过拱顶A点且垂直于ED的直线为y轴,建立平面直角坐标系.
(1)求拱形抛物线的函数关系式;
(2)舞台大幕悬挂在长度为20米的横梁MN上,其下沿恰与舞台面接触,求大幕的高度?(精确到0.01米)
精英家教网

查看答案和解析>>

(1)小明的爸爸在钉制平行四边形框架时,采用了下面的两种方法.
方法一:如图1,将两根木条AC、BD中点重叠,并用钉子固定,则四边形ABCD就是平行四边形.这样做的依据是:
对角线互相平分的四边形是平行四边形
对角线互相平分的四边形是平行四边形

方法二:如图2,将两根同样长的木条AB、CD平行放置,再木条AD、BC加固,则四边形ABCD就是平行四边形.
这样做的依据是:
一组对边平行且相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形

方法三:如图3,用两根长40cm的木条AD、BC和两根长30cm的木条AB、CD作为四边形的四条边,并把相等的木条作为相对的边用钉子固定,则四边形ABCD就是平行四边形.这样做的依据是:
两组对边分别相等的四边形是平行四边形
两组对边分别相等的四边形是平行四边形


(2)2002年世界数学家大会(ICM-2002)在北京召开,这节大会的会标的中央图案是经过艺术处理的“弦图”,它既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!在这个“弦图”中,隐含着我们学过的一个重要的数学定理,这个定理可以用含a、b、c的等式来表示,它是:
a2+b2=c2
a2+b2=c2

查看答案和解析>>


同步练习册答案