已知是的重心...则的最小值为 .取最小值时. . 查看更多

 

题目列表(包括答案和解析)

为常数,离心率为的双曲线上的动点到两焦点的距离之和的最小值为,抛物线的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线为负常数)上任意一点向抛物线引两条切线,切点分别为,坐标原点恒在以为直径的圆内,求实数的取值范围。

【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

第二问中,

故直线的方程为,即

所以,同理可得:

借助于根与系数的关系得到即是方程的两个不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

(Ⅱ)设

故直线的方程为,即

所以,同理可得:

是方程的两个不同的根,所以

由已知易得,即

 

查看答案和解析>>

已知下列命题:其中正确命题的序号是    (把你认为正确命题的序号都填上)
A.=(-3,4),则按向量=(-2,1)平移后的坐标仍是(-3,4);
B.已知点M是△ABC的重心,则
C.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.
D.已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2若|x1-x2|的最小值为π,则ω的值为2,θ的值为

查看答案和解析>>

给出以下五个结论:
(1)函数的对称中心是
(2)若关于x的方程在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,当a>0且a≠1,b>0时,的取值范围为
(4)若将函数的图象向右平移ϕ(ϕ>0)个单位后变为偶函数,则ϕ的最小值是
(5)已知m,n是两条不重合的直线,α,β是两个不重合的平面,若m⊥α,n∥β且m⊥n,则α⊥β;其中正确的结论是:   

查看答案和解析>>

给出以下五个结论:
(1)函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,当a>0且a≠1,b>0时,
b
a-1
的取值范围为(-∞,-
1
3
)∪(
2
3
,+∞)

(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
12

(5)已知m,n是两条不重合的直线,α,β是两个不重合的平面,若m⊥α,n∥β且m⊥n,则α⊥β;其中正确的结论是:
 

查看答案和解析>>

给出以下五个结论:
(1)函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,当a>0且a≠1,b>0时,
b
a-1
的取值范围为(-∞,-
1
3
)∪(
2
3
,+∞)

(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
12

(5)已知m,n是两条不重合的直线,α,β是两个不重合的平面,若m⊥α,nβ且m⊥n,则α⊥β;其中正确的结论是:______.

查看答案和解析>>


同步练习册答案