题目列表(包括答案和解析)
解析:由题意知
当-2≤x≤1时,f(x)=x-2,
当1<x≤2时,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定义域上都为增函数,
∴f(x)的最大值为f(2)=23-2=6.
答案:C
函数
的定义域为R,且![]()
(Ⅰ)求证:
;
(Ⅱ)若
上的最小值为
,试求f(x)的解析式;
(Ⅲ)在(Ⅱ)的条件下记
试比较
与
的大小并证明你的结论.
函数
的定义域为R,且![]()
(1)求证:a>0,b<0;
(2)若
上的最小值为
,试求f(x)的解析式;
(3)在(2)的条件下记
试比较
的大小并证明你的结论.
已知函数
定义域为R,且
,对任意
恒有
,
(1)求函数
的表达式;
(2)若方程
=
有三个实数解,求实数
的取值范围;
【解析】第一问中,利用因为
,对任意
恒有
,
![]()
第二问中,因为方程
=
有三个实数解,所以![]()
又因为
当![]()
;
当![]()
从而得到范围。
解:(1)因为
,对任意
恒有
,
![]()
(2)因为方程
=
有三个实数解,所以![]()
又因为
,当![]()
;
当![]()
;当![]()
![]()
,![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com