20.(1)证明:在△A BC中. AB=AC.AD⊥BC. ∴ ∠BAD=∠DAC. ------------2分∵ AN是△ABC外角∠CAM的平分线. 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A1B1C

(1)如图1,当ABCB1时,设A1B1BC相交于点D.证明:△A1CD是等边三角形;

(2)如图2,连接AA1BB1,设△ACA1和△BCB1的面积分别为S1S2

求证:S1S2=1∶3;

(3)如图3,设AC的中点为EA1B1的中点为PACa,连接EP.当等于多少度时,EP的长度最大,最大值是多少?

 

查看答案和解析>>

(本小题满分10分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A1B1C

(1)如图1,当ABCB1时,设A1B1BC相交于点D.证明:△A1CD是等边三角形;
(2)如图2,连接AA1BB1,设△ACA1和△BCB1的面积分别为S1S2
求证:S1S2=1∶3;
(3)如图3,设AC的中点为EA1B1的中点为PACa,连接EP.当等于多少度时,EP的长度最大,最大值是多少?

查看答案和解析>>

(本小题满分10分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A1B1C

(1)如图1,当ABCB1时,设A1B1BC相交于点D.证明:△A1CD是等边三角形;

(2)如图2,连接AA1BB1,设△ACA1和△BCB1的面积分别为S1S2

求证:S1S2=1∶3;

(3)如图3,设AC的中点为EA1B1的中点为PACa,连接EP.当等于多少度时,EP的长度最大,最大值是多少?

 

查看答案和解析>>

(本小题满分10分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A1B1C

(1)如图1,当ABCB1时,设A1B1BC相交于点D.证明:△A1CD是等边三角形;
(2)如图2,连接AA1BB1,设△ACA1和△BCB1的面积分别为S1S2
求证:S1S2=1∶3;
(3)如图3,设AC的中点为EA1B1的中点为PACa,连接EP.当等于多少度时,EP的长度最大,最大值是多少?

查看答案和解析>>

一节数学课后,老师布置了一道课后练习:

下图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P,D分别在AO和BC上,PB=PD,DE⊥AC于点E.

求证:△BPO≌△PDE.

(1)理清思路,完成解答

本题证明的思路可以用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.

(2)特殊位置,证明结论

若BP平分∠ABO,其余条件不变,求证:AP=CD;

(3)知识迁移,探索新知

若点P是一个动点,当点P运动到OC的中点时,满足题中条件的点D也随之在直线BC上运动到点,请直接写出C与A的数量关系(不必写解答过程).

查看答案和解析>>


同步练习册答案