∴当A-=0.即A= 时.的最大值为-------------- 查看更多

 

题目列表(包括答案和解析)

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>

已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是

(A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

【解析】    做出三角形的区域如图,由图象可知当直线经过点B时,截距最大,此时,当直线经过点C时,直线截距最小.因为轴,所以,三角形的边长为2,设,则,解得,因为顶点C在第一象限,所以,即代入直线,所以的取值范围是,选A.

 

查看答案和解析>>

因客流量临时增大,某鞋店拟用一个高为50 cm(即EF=50 cm)的平面镜自制一个竖直摆放的简易鞋镜.根据经验,一般顾客AB的眼睛B到地面的距离x(cm)在区间[140,180]内.设支架FG高为h(0<h<90)cm,AG=100 cm,顾客可视的镜像范围为CD(如图所示),记CD的长度为y(y=GD-GC).

(1)当h=40 cm时,试求y关于x的函数关系式和y的最大值;

(2)当顾客的鞋A在镜中的像A1满足不等关系GC<GA1≤GD(不计鞋长)时,称顾客可在镜中看到自己的鞋,若一般顾客都能在镜中看到自己的鞋,试求h的取值范围.

查看答案和解析>>


同步练习册答案