题目列表(包括答案和解析)
. |
| a1a2a3a4a5 |
| 31 |
| 256 |
| 31 |
| 256 |
..在
中,
分别为内角
所对的边,且
.
现给出三个条件:①
; ②
;③
.试从中选出两个可以确定
的条件,并以此为依据求
的面积.(只需写出一个选定方案即可)你选择的条件是 (用序号填写);由此得到的
的面积为
.设
是公差不为零的等差数列,
为其前
项和,满足:
且
成等比数列.
(I)求数列
的通项公式;
(II)设数列
满足:
,
,
为数列
的前
项和,问是否存在正整数
,使得
成立?若存在,求出
;若不存在,请说明理由.
.(本小题满分14分)
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收
益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单
位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.现
有两个奖励方案的函数模型:(1)
;(2)
.试问这两个函数模
型是否符合该公司要求,并说明理由.
.(本小题满分14分)
已知椭圆
的左焦点为![]()
,离心率e=
,M、N是椭圆上的动
点。
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:
,直线OM与ON的斜率之积为
,问:是否存在定点
,
使得
为定值?,若存在,求出
的坐标,若不存在,说明理由。
(Ⅲ)若
在第一象限,且点
关于原点对称,点
在
轴上的射影为
,连接
并延长
交椭圆于点
,证明:
;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com