20(I)解法一:设两点坐标分别为..由题设知 查看更多

 

题目列表(包括答案和解析)

精英家教网设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,且A,B两点坐标分别为(x1,y1)、(x2,y2),y1>0,y2<0,M是抛物线的准线上的一点,O是坐标原点.若直线MA,MF,MB的斜率分别记为:KMA=a,KMF=b,KMB=c,(如图)
(I)若y1y2=-4,求抛物线的方程;
(II)当b=2时,求a+c的值;
(III)如果取KMA=2,KMB=-
12
时,判定|∠AMF-∠BMF|和∠MFO的值大小关系.并说明理由.

查看答案和解析>>

(08年杨浦区测试)设抛物线的焦点为,经过点的直线交抛物线于两点,且两点坐标分别为是抛物线的准线上的一点,是坐标原点.若直线的斜率分别记为:,(如图)

   (1)若,求抛物线的方程.

   (2)当时,求的值.

   (3)如果取 时,

(文科考生做)判定的值大小关系.并说明理由.

   (理科考生做)判定的值大小关系.并说明理由.

通过你对以上问题的研究,请概括出在怎样的更一般的条件下,使得你研究的结果(即的值大小关系)不变,并证明你的结论.

 

 

查看答案和解析>>

抛物线有光学性质: 由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y2=2px(p>0)  一光源在点M(,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P,折射后又射向抛物线上的点Q,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l: 2x-4y-17=0上的点N,再折射后又射回点M(如下图所示)

 (1)设PQ两点坐标分别为(x1,y1)、(x2,y2),证明:y1·y2=-p2

(2)求抛物线的方程;

(3)试判断在抛物线上是否存在一点,使该点与点M关于PN所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.

查看答案和解析>>

抛物线有光学性质:由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y2=2px(p>0).一光源在点M(,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P,折射后又射向抛物线上的点Q,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l:2x-4y-17=0上的点N,再折射后又射回点M(如图所示).

(1)设P、Q两点坐标分别为(x1,y1)、(x2,y2),证明y1·y2=-p2

(2)求抛物线的方程;

(3)试判断在抛物线上是否存在一点,使该点与点M关于PN所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.

查看答案和解析>>

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,且A,B两点坐标分别为(x1,y1)、(x2,y2),y1>0,y2<0,M是抛物线的准线上的一点,O是坐标原点.若直线MA,MF,MB的斜率分别记为:KMA=a,KMF=b,KMB=c,(如图)
(I)若y1y2=-4,求抛物线的方程;
(II)当b=2时,求a+c的值;
(III)如果取时,判定|∠AMF-∠BMF|和∠MFO的值大小关系.并说明理由.

查看答案和解析>>


同步练习册答案