题目列表(包括答案和解析)
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵
,∴
,…………………1分
∵
,得到三角关系是
,结合
,解得。
(2)由
,解得
,
,结合二倍角公式
,和
,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②联立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
将①代入②中,可得
③ …………………4分
将③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,从而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
综上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
综上可得
…………………12分
(若用
,又∵
∴
,
已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=
(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1
【解析】若函数
的图象与
轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为
,令
,解得
,可知当极大值为
,极小值为
.由
,解得
,由
,解得
,所以
或
,选A.
对某班级
名学生学习数学与学习物理的成绩进行调查,得到如下表所示:
|
|
数学成绩较好 |
数学成绩一般 |
合计 |
|
物理成绩较好 |
18 |
7 |
25 |
|
物理成绩一般 |
6 |
19 |
25 |
|
合计 |
24 |
26 |
50 |
由
,解得![]()
|
|
0.050 |
0.010 |
0.001 |
|
|
3.841 |
6.635 |
10.828 |
参照附表,得到的正确结论是( )
(A)在犯错误的概率不超过
的前提下,认为“数学成绩与物理成绩有关”
(B)在犯错误的概率不超过
的前提下,认为“数学成绩与物理成绩无关”
(C)有
的把握认为“数学成绩与物理成绩有关”
(D)有
以上的把握认为“数学成绩与物理成绩无关”
D
解析:由正弦定理得![]()
.又由椭圆定义得AB+BC=2×5=10.AC=8. 所以![]()
![]()
D
解析:由正弦定理得![]()
.又由椭圆定义得AB+BC=2×5=10.AC=8. 所以![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com