当k=4时..所以, 查看更多

 

题目列表(包括答案和解析)

给出以下4个命题,其中所有正确结论的序号是________.

(1)当a为任意实数时,直线(a-1)x-y+2a+1=0恒过定点P,则焦点在y轴上且过点P的抛物线的标准方程是x2y.

(2)若直线l1+2kx+(k+1)y+1=0与直线l2:x-ky+2=0垂直,则实数k=1;

(3)已知数列{an}对于任意p,q∈N*,有ap+aq=ap+q,若a1,则a36=4

(4)对于一切实数x,令[x]为不大于x的最大整数,例如:[3.05]=3,[]=1,则函数f(x)=[x]称为高斯函数或取整函数,若an=f()(n∈N*),Sn为数列{an}的前n项和,则S30=145

查看答案和解析>>

21.设F1F2分别为椭圆C=1(ab>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

(3)已知椭圆具有性质:若MN是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PMPN的斜率都存在,并记为kPMkPN时,那么kPMkPN之积是与点P位置无关的定值,试对双曲线=1写出具有类似特性的性质,并加以证明.

查看答案和解析>>

F1F2分别为椭圆C:=1(ab>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPMkPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲线=1具有类似特性的性质并加以证明.

查看答案和解析>>

设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲线=1具有类似特性的性质并加以证明.

查看答案和解析>>

两县城A和B相距20 km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.

(1)按下列要求建立函数关系式:

(i)设∠CBA=(rad),将y表示成的函数;并写出函数的定义域.

(ii)设AC=x(km),将y表示成x的函数;并写出函数的定义域.

(2)请你选用(1)中的一个函数关系确定垃圾处理厂的位置,使建在此处的垃圾处理厂对城A和城B的总影响度最小?

查看答案和解析>>


同步练习册答案