[解析]由条件得:. .则.时.. 查看更多

 

题目列表(包括答案和解析)

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数的分布列和数学期望。

【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得

第二问中可能的取值为0,1,2,3  ,       

 , 

从而得到分布列和期望值

解:(I)由已知条件得 ,即,则的值为

 (Ⅱ)可能的取值为0,1,2,3  ,       

 , 

   的分布列为:(1分)

 

0

1

2

3

 

 

 

 

所以 

 

查看答案和解析>>

下列叙述中,是离散型随机变量的为(    ) 

A.某人早晨在车站等出租车的时间

B.将一颗均匀硬币掷十次,出现正面或反面的次数

C.连续不断的射击,首次命中目标所需要的次数

D.袋中有2个黑球6个红球,任取2个,取得一个红球的可能性 3.C.解析:由条件f(a)>0,f(b)>0仅知道二次函数图象过x轴上方两点,据此画图会出现多种情况与x轴交点横坐标在(a,b)上可能有0个、1个或2个,因此选C

查看答案和解析>>

已知中,.设,记.

(1)   求的解析式及定义域;

(2)设,是否存在实数,使函数的值域为?若存在,求出的值;若不存在,请说明理由.

【解析】第一问利用(1)如图,在中,由,,

可得

又AC=2,故由正弦定理得

 

(2)中

可得.显然,,则

1当m>0的值域为m+1=3/2,n=1/2

2当m<0,不满足的值域为

因而存在实数m=1/2的值域为.

 

查看答案和解析>>

下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程
y
=3-5x
,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程
y
=
b
x+
a
必过(
.
x
 ,
.
y
);
④在一个2×2列联中,由计算得K2=13.079则有99%的把握确认这两个变量间有关系;
其中错误 的个数是(  )
本题可以参考独立性检验临界值表:
P(K2≥k) 0.5 0.40 0.25 0.15 0.10 0.05 0.25 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.535 7.879 10.828
A、0B、1C、2D、3

查看答案和解析>>


同步练习册答案