(Ⅲ)若是与的等差中项.求的值.并证明:对任意的.是与的等差中项. 查看更多

 

题目列表(包括答案和解析)

等差数列{an}的各项均为正整数,a1=3,前n项和为Sn,等比数列{bn}中,b1=1,且b2•S2=16,{ban}是公比为4的等比数列
(1)求an与bn
(2)设Cn=
1
S1
+
1
S2
+
1
S2
+…+
1
Sn
,若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+
3
4
>Cn恒成立,求实数t的取值范围.

查看答案和解析>>

等差数列{an}的各项均为正整数,a1=3,前n项和为Sn,等比数列{bn}中,b1=1,且b2•S2=16,{ban}是公比为4的等比数列
(1)求an与bn
(2)设Cn=
1
S1
+
1
S2
+
1
S2
+…+
1
Sn
,若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+
3
4
>Cn恒成立,求实数t的取值范围.

查看答案和解析>>

等差数列{an}的各项均为正整数,a1=3,前n项和为Sn,等比数列{bn}中,b1=1,且b2•S2=16,{}是公比为4的等比数列
(1)求an与bn
(2)设,若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+>Cn恒成立,求实数t的取值范围.

查看答案和解析>>

在等差数列{an}中,a4S4=-14,S5-a5=-14,其中Sn是数列{an}的前n项之和,曲线Cn的方程是
x2
|an|
+
y2
4
=1,直线l的方程是y=x+3.
(1)求数列{an}的通项公式;   
(2)判断Cn与l的位置关系;
(3)当直线l与曲线Cn相交于不同的两点An,Bn时,令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)对于直线l和直线外的一点P,用“l上的点与点P距离的最小值”定义点P到直线l的距离与原有的点到直线距离的概念是等价的.若曲线Cn与直线l不相交,试以类似的方式给出一条曲线Cn与直线l间“距离”的定义,并依照给出的定义,在Cn中自行选定一个椭圆,求出该椭圆与直线l的“距离”.

查看答案和解析>>

(1)若(1+x)n的展开式中,x3的系数是x的系数的7倍,求n;
(2)若(ax+1)7(a≠0)的展开式中,x3的系数是x2的系数与x4的系数的等差中项,求a;
(3)已知(2x+xlgx8的展开式中,二项式系数最大的项的值等于1120,求x.

查看答案和解析>>


同步练习册答案