[解析](Ⅰ)由条件得由此可得 查看更多

 

题目列表(包括答案和解析)

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

已知正数数列{an }中,a1 =2.若关于x的方程 ()对任意自然数n都有相等的实根.

(1)求a2 ,a3的值;

(2)求证

【解析】(1)中由题意得△,即,进而可得,. 

(2)中由于,所以,因为,所以数列是以为首项,公比为2的等比数列,知数列是以为首项,公比为的等比数列,利用裂项求和得到不等式的证明。

(1)由题意得△,即,进而可得   

(2)由于,所以,因为,所以数列是以为首项,公比为2的等比数列,知数列是以为首项,公比为的等比数列,于是

,

所以

 

查看答案和解析>>

某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的一个是

A.甲、乙、丙的总体的平均数不相同

B.乙科总体的标准差及平均数都居中

C.丙科总体的平均数最小

D.甲科总体的标准差最小

 

查看答案和解析>>

在研究某新措施对“非典”的防治效果问题时,得到如下列联表:

 

存活数

死亡数

合计

新措施

132

18

150

对照

114

36

150

合计

246

54

300

由表中数据可得,故我们由此认为 “新措施对防治非典有效” 的把握为(   )

A.0             B.        C.        D.

 

查看答案和解析>>

为区间上的连续函数,且恒有,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间上的均匀随机数,由此得到N个点,再数出其中满足的点数,那么由随机模拟方案可得积分的近似值为      

 

查看答案和解析>>


同步练习册答案