21. 20090515 (1)求动点Q的轨迹E的方程, 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

           20个下岗职工开了50亩荒地,这些地可以种蔬菜、棉花、水稻,如果种这些农作物每亩地所需的劳力和预计的产值如下:

                                                                                    

每亩需劳力

每亩预计产值

蔬  菜

1100元

棉  花

750元

水  稻

600元

问怎样安排,才能使每亩地都种上作物,所有职工都有工作,而且农作物的预计总产值达到最高?

查看答案和解析>>

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

(07年福建卷理)(本小题满分12分)在中,

(Ⅰ)求角的大小;

(Ⅱ)若最大边的边长为,求最小边的边长.

查看答案和解析>>

(07年福建卷文)(本小题满分12分)

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,DCC1中点.

(I)求证:AB1⊥平面A1BD;

(II)求二面角A-A1D-B的大小.

查看答案和解析>>

 

一、选择题

CBACD  ADBAC  DB

二、填空题

13.    14.    15.    16.①③④

三、解答题

17.解:(1)由题设

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)设图象向左平移m个单位,得到函数的图象.

,…………………………8分

对称,

…………………………10分

…………………………12分

18.(本小题满分12分)

解:(1)设等差数列的公差为d,等比数列的公比为q,

由题设知

……………………3分

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小题满分12分)

∵EF为△A­BC1的中位线,

∴EF//BC1,……………………3分

又∵EF平面AB1F,BC1平面AB1F

∴BC1//平面AB1F,………………6分

(2)在正三棱柱中,

B2F⊥A1C1

而A1C1B1⊥面ACC1A1

∵B1F⊥平面AA1C1C,A1M平面AA1C1C,

∴B1F⊥A1M,

在△AA1F中,

在△A1MC1中,…………………………9分

∴∠AFA1=∠A1MC1

又∵∠A1MC1+∠MA1C1=90°,

∴∠AFA1+∠MA1C1=90°,

∴A1M⊥AF,…………………………11分

又∵

∴A1M⊥平面AFB1.…………………………12分

20.(本小题满分12分)

解:(1)先后两次抛掷一枚骰子,将得到的点数分别为a,b,

则事件总数为6×6=36…………2分

当a=1时,b=1,2,3,4

a=2时,b=1,2,3

a=3时,b=1,2

a=4,b=1

共有(1,1)(1,2)……

(4,1)10种情况…………6分

…………7分

(2)相切的充要条件是

满足条件的情况只有两种情况…………10分

……12分

21.(本小题满分12分)

解:(1)设

…………………………3分

,这就是轨迹E的方程.……………………4分

(2)当时,轨迹为椭圆,方程为①…………5分

设直线PD的方程为

代入①,并整理,得

   ②

由题意,必有,故方程②有两上不等实根.

设点

由②知,………………7分

直线QF的方程为

时,令

代入

整理得

再将代入,

计算,得x=1,即直线QF过定点(1,0)

当k=0时,(1,0)点……………………12分

22.(本小题满分14分)

解:(1)当a=0,b=3时,

,解得

x变化时,变化状态如下表:

0

(0,2)

2

+

0

-

0

+

0

-4

从上表可知=

……………………5分

(2)当a=0时,≥在恒成立,

在在恒成立,……………………………7分

d则

x>1时,>0,

是增函数,

b≤1.…………………………………………………………9分

(Ⅲ)∵ ,∴?=0,

,∴

由题知的两根,

>0………………………11分

则①式可化为

………………………………………………12分

当且仅当,即时取“=”.

的取值范围是 .……………………………………14分