即[kp+,kp+] 13分 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=cos(2x+)+sinx·cosx

⑴ 求函数f(x)的单调减区间;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一问中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二问中,∵xÎ[0, ],∴2x-Î[-,],

∴当2x-=-,即x=0时,f(x)min=-,

当2x-, 即x=时,f(x)max=1

第三问中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用构造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的减区间是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴当2x-=-,即x=0时,f(x)min=-,        ……………………8分

当2x-, 即x=时,f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

设x、y∈R+,S=x+y,P=xy,以下四个命题中正确命题的序号是
③④
③④
.(把你认为正确的命题序号都填上)
①若P为定值m,则S有最大值2
m
;②若S=P,则P有最大值4;③若S=P,则S有最小值4;④若S2≥kP总成立,则k的取值范围为k≤4.

查看答案和解析>>

给定的抛物线y2=2px(p>0),在x轴上是否存在一点K,使得对于抛物线上任意一条过K的弦PQ,均有
1
|KP|2
+
1
|KQ|2
为定值,若存在,求出点K及定值;若不存在,说明理由.

查看答案和解析>>

精英家教网如图,在直角坐标系中,O为坐标原点,直线AB⊥x轴与点C,|
OC
|=4
CD
=3
DO
,动点M到直线AB的距离是它到点D的距离的2倍.
(I)求点M的轨迹方程
(II)设点K为点M的轨迹与x轴正半轴的交点,直线l交点M的轨迹于E,F两点(E,F与点K不重合),且满足
KE
KF
.动点P满足2
OP
=
OE
+
OF
,求直线KP的斜率的取值范围.

查看答案和解析>>

设x、y∈R+,S=x+y,P=xy,以下四个命题中正确命题的序号是_________________.(把你认为正确的命题序号都填上)

①若P为定值m,则S有最大值

②若S=P,则P有最大值4;

③若S=P,则S有最小值4;

④若S2≥kP总成立,则k的取值范围为k≤4.

查看答案和解析>>


同步练习册答案