所以根据概率计算公式有 查看更多

 

题目列表(包括答案和解析)

山东省《体育高考方案》于2012年2月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.

(Ⅰ)请估计一下这组数据的平均数M;

(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.

【解析】本试题主要考查了概率的运算和统计图的运用。

(1)由由频率分布直方图可知:50~60分的频率为0.1, 60~70分的频率为0.25, 70~80分的频率为0.45, 80~90分的频率为0.15, 90~100分的频率为0.05,然后利用平均值公式,可知这组数据的平均数M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)

(2)中利用90~100分数段的人数为2人,频率为0.05;得到总参赛人数为40,然后得到0~60分数段的人数为40×0.1=4人,第五组中有2人,这样可以得到基本事件空间为15种,然后利用其中两人成绩差大于20的选法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8种,得到概率值

解:(Ⅰ)由频率分布直方图可知:50~60分的频率为0.1, 60~70分的频率为0.25, 70~80分的频率为0.45, 80~90分的频率为0.15, 90~100分的频率为0.05; ……………2分

∴这组数据的平均数M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)…4分

(Ⅱ)∵90~100分数段的人数为2人,频率为0.05;

∴参加测试的总人数为=40人,……………………………………5分

∴50~60分数段的人数为40×0.1=4人, …………………………6分

设第一组50~60分数段的同学为A1,A2,A3,A4;第五组90~100分数段的同学为B1,B2

则从中选出两人的选法有:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15种;其中两人成绩差大于20的选法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8种 …………………………11分

则选出的两人为“帮扶组”的概率为

 

查看答案和解析>>

(本题满分12分)

某学校的课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:

序号

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

数学

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若单科成绩在85分以上(含85分),则该科成绩为优秀.

(1)根据上表完成下面的列联表(单位:人)

数学成绩优秀

数学成绩不优秀

总计

物理成绩优秀

物理成绩不优秀

总计

20

(2)根据(1)中表格的数据计算,是否有99%的把握,认为学生的数学成绩与物理成绩之间有关系?

(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.

参考公式:

P(K2k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

(本题满分12分)某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:

序号

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

数学

成绩

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理

成绩

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

 

 

若单科成绩85分以上(含85分),则该科成绩为优秀.

(1)根据上表完成下面的2×2列联表(单位:人):

 

数学成绩优秀

数学成绩不优秀

合   计

物理成绩优秀

 

 

 

物理成绩不优秀

 

 

 

合   计

 

 

20

(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?

(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.

参考数据及公式:

①随机变量,其中为样本容量;

②独立检验随机变量的临界值参考表:

0.010

0.005

0.001

6.635

7.879

10.828

 

 

 

 

 

查看答案和解析>>

(本题满分12分)某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:

序号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
数学
成绩
95
75
80
94
92
65
67
84
98
71
67
93
64
78
77
90
57
83
72
83
物理
成绩
90
63
72
87
91
71
58
82
93
81
77
82
48
85
69
91
61
84
78
86
 
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
 
数学成绩优秀
数学成绩不优秀
合  计
物理成绩优秀
 
 
 
物理成绩不优秀
 
 
 
合  计
 
 
20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据及公式:
①随机变量,其中为样本容量;
②独立检验随机变量的临界值参考表:

0.010
0.005
0.001

6.635
7.879
10.828
 

查看答案和解析>>

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:
序号12345678910
数学成绩95758094926567849871
物理成绩90637287917158829381
序号11121314151617181920
数学成绩67936478779057837283
物理成绩77824885699161847886
若数学成绩90分以上为优秀,物理成绩85分(含85分)以上为优秀.
(Ⅰ)根据上表完成下面的2×2列联表:
数学成绩优秀数学成绩不优秀合计
物理成绩优秀
物理成绩不优秀12
合计20
(Ⅱ)根据题(1)中表格的数据计算,有多少的把握认为学生的数学成绩与物理成绩之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:抽到12号的概率的概率.
参考数据公式:①独立性检验临界值表
P(K2≥x0.500.400.250.150.100.050.0250.0100.0050.001
x0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
②独立性检验随机变量K2值的计算公式:K2=

查看答案和解析>>


同步练习册答案