令得列表如下(略) 查看更多

 

题目列表(包括答案和解析)

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

探究函数f(x)=x+
4
x
,x∈(0,+∞)
的最小值,并确定取得最小值时x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
4
x
(x>0)
在区间(0,2)上递减,函数f(x)=x+
4
x
(x>0)
在区间
 
上递增;
(2)函数f(x)=x+
4
x
(x>0)
,当x=
 
时,y最小=
 

(3)函数f(x)=x+
4
x
(x<0)
时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

探究函数f(x)=x+
4
x
  x∈(0,+∞)的最小值,并确定相应的x的值,列表如下,请观察表中y值随x值变化的特点,完成下列问题:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
(1)若当x>0时,函数f(x)=x+
4
x
时,在区间(0,2)上递减,则在
 
上递增;
(2)当x=
 
时,f(x)=x+
4
x
,x>0的最小值为
 

(3)试用定义证明f(x)=x+
4
x
,x>0在区间上(0,2)递减;
(4)函数f(x)=x+
4
x
,x<0有最值吗?是最大值还是最小值?此时x为何值?
解题说明:(1)(2)两题的结果直接填写在答题卷中横线上;(4)题直接回答,不需证明.

查看答案和解析>>

精英家教网某校一课题小组对郑州市工薪阶层对“楼市限购令”态度进行调查,抽调了50人,他们月收入频数分布及对“楼市限购令”赞成人数如下表.
月收入
(单位:百元)
[15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 3 1
(1)完成下图的月收入频率分布直方图(注意填写纵坐标)及2×2列联表;
月收入不低于55百元人数 月收入低于55百元人数 合计
赞成 a=
 
c=
 
 
不赞成 b=
 
d=
 
 
合计
 
 
 
(2)若从收入(单位:百元)在[15,25)的被调查者中随机选取两人进行追踪调查,求选中的2人恰好有1人不赞成“楼市限购令”的概率.

查看答案和解析>>

已知函数f(x)=
4x
x2+a

在探究a=1时,函数f(x)在区间[0,+∞)上的最大值问题.为此,我们列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x)在[0,+∞)(a=1)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)写出函数f(x)(a=1)的定义域,并求f(x)值域.

查看答案和解析>>


同步练习册答案