所以函数是集合M中的元素.----4分 查看更多

 

题目列表(包括答案和解析)

(本题满分15分)设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足

   (I)证明:函数是集合M中的元素;

   (II)证明:函数具有下面的性质:对于任意,都存在,使得等式成立。 

(III)若集合M中的元素具有下面的性质:若的定义域为D,则对于任意[m,n],都存在,使得等式成立。试用这一性质证明:对集合M中的任一元素,方程只有一个实数根。

查看答案和解析>>

(本题满分14分)设M是由满足下列条件的函数构成的集合:“①方有实数根;②函数的导数满足

 (I)证明:函数是集合M中的元素;

 (II)证明:函数具有下面的性质:对于任意,都存在,使得等式成立。 

 

查看答案和解析>>

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f(x)满足
0<f(x)<1”
(I)证明:函数f(x)=
3x
4
+
x3
3
(0≤x<
1
2
)是集合M中的元素;
(II)证明:函数f(x)=
3x
4
+
x3
3
(0≤x
1
2
)具有下面的性质:对于任意[m,n]⊆[0,
1
2
),都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.
(III)若集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.试用这一性质证明:对集合M中的任一元素f(x),方程f(x)-x=0只有一个实数根.

查看答案和解析>>

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根; ②函数f(x)的导数f'(x)满足0<f'(x)<1.”
(I)判断函数f(x)=
x
2
+
sinx
4
是否是集合M中的元素,并说明理由;
(II)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根.

查看答案和解析>>

(2012•江西模拟)设M是由满足下列条件的函数f(x)构成的集合:①方程f(x)-x=0有实根;②函数f(x)的导数f′(x)满足0<f′(x)<1.
(1)若函数f(x)为集合M中的任意一个元素,证明:方程f(x)-x=0只有一个实根;
(2)判断函数g(x)=
x
2
-
lnx
2
+3(x>1)
是否是集合M中的元素,并说明理由;
(3)设函数f(x)为集合M中的任意一个元素,对于定义域中任意α,β,证明|f(α)-f(β)|≤|α-β|

查看答案和解析>>


同步练习册答案