题目列表(包括答案和解析)
| 2 |
| 3 |
| 3 |
| 4 |
已知数列
是首项为
的等比数列,且满足![]()
.
(1) 求常数
的值和数列
的通项公式;
(2) 若抽去数列
中的第一项、第四项、第七项、……、第
项、……,余下的项按原来的顺序组成一个新的数列
,试写出数列
的通项公式;
(3) 在(2)的条件下,设数列
的前
项和为
.是否存在正整数
,使得
?若存在,试求所有满足条件的正整数
的值;若不存在,请说明理由.
【解析】第一问中解:由
得
,,
又因为存在常数p使得数列
为等比数列,
则
即
,所以p=1
故数列
为首项是2,公比为2的等比数列,即
.
此时
也满足,则所求常数
的值为1且![]()
第二问中,解:由等比数列的性质得:
(i)当
时,
;
(ii) 当
时,
,
所以![]()
第三问假设存在正整数n满足条件,则
,
则(i)当
时,
![]()
,
学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为
,不堵车的概率为
;汽车走公路②堵车的概率为
,不堵车的概率为
,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为
,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数
的分布列和数学期望。
【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得![]()
第二问中
可能的取值为0,1,2,3
,
,
从而得到分布列和期望值
解:(I)由已知条件得
,即
,则
的值为
。
(Ⅱ)
可能的取值为0,1,2,3
,
,
的分布列为:(1分)
|
|
0 |
1 |
2 |
3 |
|
|
|
|
|
|
所以![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com