求二面角的射影公式是.其中各个符号的含义是:是二面角的一个面内图形F的面积.是图形F在二面角的另一个面内的射影.是二面角的大小. 查看更多

 

题目列表(包括答案和解析)

(09年海淀区二模理)(14分)

如图,斜三棱柱的底面是直角三角形,,点在底面上的射影恰好是的中点,且

(Ⅰ)求证:平面平面

(Ⅱ)求证:

(Ⅲ)求二面角的大小.

查看答案和解析>>

(本小题满分12分)
已知平行六面体的底面为正方形,分别为上、下底面的中心,且在底面的射影是
(Ⅰ)求证:平面平面
(Ⅱ)若点分别在棱上上,且,问点在何处时,
(Ⅲ)若,求二面角的大小(用反三角函数表示)。

查看答案和解析>>

已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.

(1)求异面直线所成角的余弦值;

(2)求二面角的正弦值;

(3)求此几何体的体积的大小

 

查看答案和解析>>

一个多面体的直观图和三视图如图所示,其中分别是的中点,上的一动点,主视图与俯视图都为正方形。

⑴求证:

⑵当时,在棱上确定一点,使得∥平面,并给出证明。

⑶求二面角的平面角余弦值。

 

查看答案和解析>>

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>


同步练习册答案