题目列表(包括答案和解析)
数列{
}的前n项和为
,![]()
(Ⅰ)设
,证明:数列{
}是等比数列;
(Ⅱ)求数列
的前n项和
;
(Ⅲ)若
,
,
,求不超过P的最大整数的值。
设数列{a
}的首项a
=1,前n项和S
满足关系式:3tS
-(2t+3)S
=3t(t>0,n=2,3,4…).(1)求证:数列{a
}是等比数列;(2)设数列{a
}的公比为f(t),若数列{b
}满足:b
=1,b
=f(
)(n=2,3,4…),求![]()
;(3) 对于(2)中的数列{b
},求b
b
-b
b
+b
b
-…+(-1)
b
b
的和。
将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:
a1
a2 a3
a4 a5 a6
a7 a8 a9 a10
……
记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1.
Sn为数列{bn}的前n项和,且满足
=1(n≥2).
(Ⅰ)证明数列{
}成等差数列,并求数列{bn}的通项公式;
(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当
时,求上表中第k(k≥3)行所有项的和.
设数列{
}的首项
,前
项和S
满足关系式
(其中
=1,2,3,4,…).
(Ⅰ)求证:数列{
}是等比数列;
(Ⅱ)设数列{
}的公比为
,作数列{
},使
,(
=2,3,4,…),求数列{
}的通项公式;
(Ⅲ)求和:
.
Ⅰ选择题
1.C 2. B 3. B 4.B 5.A 6.C 7.A 8.C 9.D 10.A 11.C 12.C
Ⅱ非选择题
13.
14. 
15.
16. (2) (3)
17. 解:
(4分)
(1)增区间为:
, 减区间为:
(8分)
(2)
(12分)
18.解:因骰子是均匀的,所以骰子各面朝下的可能性相等,设其中一枚骰子朝下的面上的数字为x,另一枚骰子朝下的面上的数字为y,则
的取值如下表:
x+y y
x
1
2
3
5
1
2
3
4
6
2
3
4
5
7
3
4
5
6
8
5
6
7
8
10
从表中可得:
(8分)
(2)p(
=奇数)
………………12分
19.解:(1)

∴
(2分)
又
恒成立 ∴
∴
∴
∴
(6分)
(2)
∴
∴ ①)当
时, 解集为
②当
时,解集为
③当
时,解集为
(12分)
20.解:PD⊥面ABCD ∴DA、DC、DP 相互垂直
建立如图所示空间直角坐标系Oxyz
(1)

∴


∴

∴PC⊥DA , PC⊥DE
∴PC⊥面ADE (4分)
(2)∵PD⊥面ABCD PC⊥平面ADE
∴PD与PC夹角为所求
∴ 所求二面角E-AD-B的大小为
(8分)
(3)由(2)得:四边形ADFE为直角梯形,且 EF=1,DF=
,AD=2
∴ 
∴ 所求部分体积
(12分)
21.解:(1)


为等比数列 






(4分)
(2)



(6分)
(3)





(7分)





(10分)
∴M≥6 
















(12分)
22.解:(1)直线AB的方程为:
与抛物线的切点设为T
且
∴


∴抛物线c的方程为:
(3分)
⑵设直线l的方程为
:
易如:
设
,


①M为AN中点 
由 (Ⅰ)、(Ⅱ)联解,得
代入(Ⅱ)

4
∴直线l的方程为 :
(7分)
②
(9分)
FM为∠NFA的平分线
且
(11分)
又

(14分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com