题目列表(包括答案和解析)
(本小题满分14分)过抛物线C:
上一点
作倾斜角互补的两条直线,分别与抛物线交于A、B两点。
(1)求证:直线AB的斜率为定值;
(2)已知
两点均在抛物线
:
上,若△
的面积的最大值为6,求抛物线的方程。
(本小题满分14分)过抛物线C:
上一点
作倾斜角互补的两条直线,分别与抛物线交于A、B两点。
(1)求证:直线AB的斜率为定值;
(2)已知
两点均在抛物线
:
上,若△
的面积的最大值为6,求抛物线的方程。
(本小题满分14分)已知
,点
在
轴上,点
在
轴的正半轴,点
在直线
上,且满足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)当点
在
轴上移动时,求动点
的轨迹
方程;
(本小题满分14分)
如图,已知圆
:
是椭圆
的内接△
的内切圆,其中
为椭圆的左顶点。
![]()
(1)求圆
的半径
;
(2)过点
作圆
的两条切线交椭圆于
两点,证明:直线
与圆
相切。
(本小题满分14分)
设
,椭圆方程为
,抛物线方程为
.如图6所示,过点
作
轴的平行线,与抛物线在第一象限的交点为
,已知抛物线在点
的切线经过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设
分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
![]()
Ⅰ选择题
1.C 2. B 3. B 4.B 5.A 6.C 7.A 8.C 9.D 10.A 11.C 12.C
Ⅱ非选择题
13.
14. 
15.
16. (2) (3)
17. 解:
(4分)
(1)增区间为:
, 减区间为:
(8分)
(2)
(12分)
18.解:因骰子是均匀的,所以骰子各面朝下的可能性相等,设其中一枚骰子朝下的面上的数字为x,另一枚骰子朝下的面上的数字为y,则
的取值如下表:
x+y y
x
1
2
3
5
1
2
3
4
6
2
3
4
5
7
3
4
5
6
8
5
6
7
8
10
从表中可得:
(8分)
(2)p(
=奇数)
………………12分
19.解:(1)

∴
(2分)
又
恒成立 ∴
∴
∴
∴
(6分)
(2)
∴
∴ ①)当
时, 解集为
②当
时,解集为
③当
时,解集为
(12分)
20.解:PD⊥面ABCD ∴DA、DC、DP 相互垂直
建立如图所示空间直角坐标系Oxyz
(1)

∴


∴

∴PC⊥DA , PC⊥DE
∴PC⊥面ADE (4分)
(2)∵PD⊥面ABCD PC⊥平面ADE
∴PD与PC夹角为所求
∴ 所求二面角E-AD-B的大小为
(8分)
(3)由(2)得:四边形ADFE为直角梯形,且 EF=1,DF=
,AD=2
∴ 
∴ 所求部分体积
(12分)
21.解:(1)


为等比数列 






(4分)
(2)



(6分)
(3)





(7分)





(10分)
∴M≥6 
















(12分)
22.解:(1)直线AB的方程为:
与抛物线的切点设为T
且
∴


∴抛物线c的方程为:
(3分)
⑵设直线l的方程为
:
易如:
设
,


①M为AN中点 
由 (Ⅰ)、(Ⅱ)联解,得
代入(Ⅱ)

4
∴直线l的方程为 :
(7分)
②
(9分)
FM为∠NFA的平分线
且
(11分)
又

(14分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com