(2)假设存在直线满足两个条件.显然斜率存在. -----------4分 查看更多

 

题目列表(包括答案和解析)

定义在D={x∈R|x≠0}上的函数f(x)满足两个条件:①对于任意x、y∈D,都有f(x)f(y)-f(xy)=
x2+y2
xy
;②曲线y=f(x)存在与直线x+y+1=0平行的切线.
(Ⅰ)求过点(-1,
1
4
)的曲线y=f(x)的切线的一般式方程;
(Ⅱ)当x∈(0,+∞),n∈N+时,求证:fn(x)-f(xn)≥2n-2.

查看答案和解析>>

(本小题12分) 将圆O: 上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线、抛物线的焦点是直线y=x-1与x轴的交点.

(1)求的标准方程;

(2)请问是否存在直线满足条件:① 过的焦点;②与交于不同两

,,且满足?若存在,求出直线的方程; 若不存在,说明

理由.

 

查看答案和解析>>

定义在D={x∈R|x≠0}上的函数f(x)满足两个条件:①对于任意x、y∈D,都有f(x)f(y)-f(xy)=;②曲线y=f(x)存在与直线x+y+1=0平行的切线.
(Ⅰ)求过点(-1,)的曲线y=f(x)的切线的一般式方程;
(Ⅱ)当x∈(0,+∞),n∈N+时,求证:fn(x)-f(xn)≥2n-2.

查看答案和解析>>

定义在D={x∈R|x≠0}上的函数f(x)满足两个条件:①对于任意x、y∈D,都有f(x)f(y)-f(xy)=
x2+y2
xy
;②曲线y=f(x)存在与直线x+y+1=0平行的切线.
(Ⅰ)求过点(-1,
1
4
)的曲线y=f(x)的切线的一般式方程;
(Ⅱ)当x∈(0,+∞),n∈N+时,求证:fn(x)-f(xn)≥2n-2.

查看答案和解析>>

定义在D={x∈R|x≠0}上的函数f(x)满足两个条件:①对于任意x、y∈D,都有f(x)f(y)-f(xy)=数学公式;②曲线y=f(x)存在与直线x+y+1=0平行的切线.
(Ⅰ)求过点(-1,数学公式)的曲线y=f(x)的切线的一般式方程;
(Ⅱ)当x∈(0,+∞),n∈N+时,求证:fn(x)-f(xn)≥2n-2.

查看答案和解析>>


同步练习册答案