题目列表(包括答案和解析)
(本小题满分14分)
在△OAB的边OA,OB上分别有一点P,Q,已知
:
=1:2,
:
=3:2,连结AQ,BP,设它们交于点R,若
=a,
=b.
(1)用a与 b表示
;
(2)过R作RH⊥AB,垂足为H,若| a|=1, | b|=2, a与 b的夹角
的取值范围.
(本小题满分14分)已知A(8,0),B、C两点分别在y轴和x轴上运动,并且满足
。
(1)求动点P的轨迹方程。
(2)若过点A的直线L与动点P的轨迹交于M、N两点,且![]()
其中Q(-1,0),求直线L的方程.
(本小题满分14分)
已知函数
,a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)讨论
的单调性;
(Ⅱ)设a=3,求
在区间{1,
}上值域。期中e=2.71828…是自然对数的底数。
(本小题满分14分)
已知数列{an}和{bn}满足:a1=λ,an+1=
其中λ为实数,n为正整数。
(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和。是否存在实数λ,使得对任意正整数n,都有
a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由。
(本小题满分14分)
如图(1),
是等腰直角三角形,
,
、
分别为
、
的中点,将
沿
折起, 使
在平面
上的射影
恰为
的中点,得到图(2).
(Ⅰ)求证:
;
(Ⅱ)求三棱锥
的体积.
![]()
一、选择题:本大题共8小题,每小题5分,共40分.
1.B 2.C 3.A 4.A 5.B 6.C 7.D 8.C
二、填空题:本大题共6小题,每小题5分,共30分.
12.24;81 13.1;45° 14.2 |x|
注:两空的题目,第一个空2分,第二个空3分.
三、解答题:本大题共6小题,共80分.
15.(本小题满分12分)
(Ⅰ)解:
∵函数f(x)=asinx+bcosx的图象经过点
,
∴
2分 即
4分
解得a=1,b=-
.
6分
(Ⅱ)解:
由(Ⅰ)得f(x)=sinx-
cosx=2sin(
).
8分
∵0≤x≤π,
∴-
9分
当x-
,即x=
时,sin
取得最大值1. 11分
∴f(x)在[0,π]上的最大值为2,此时x=
.
12分
16.(本小题满分13分)
(Ⅰ)解:
记“甲投球命中”为事件A,“乙投球命中”为事件B,则A,B相互独立,
且P(A)=
,P(B)=
.
那么两人均没有命中的概率P=P(
)=P(
)P(
)=
.
-5分
(Ⅱ)解:
记“乙恰好比甲多命中1次”为事件C,“乙恰好投球命中1次且甲恰好投球命中0次”为事件C1,“乙恰好投球命中2次且甲恰好投球命中1次”为事件C2,则C=C1+C2,C1,C2为互斥事件.
,
8分
?
11分
P(C)=P(C1)+P(C2)=
.
13分
17.(本小题满分13分)
解法一:
|