已知函数, 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=4sin(2x-
π
3
)+1
,给定条件p:
π
4
≤x≤
π
2
,条件q:-2<f(x)-m<2,若p是q的充分条件,则实数m的取值范围为
 

查看答案和解析>>

已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f(f(
52
))的值是
 

查看答案和解析>>

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

8、已知函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log5x的图象的交点个数为(  )

查看答案和解析>>

已知函数f(x)=
3-x,x>0
x2-1.x≤0
,则f[f(-2)]=
 

查看答案和解析>>

一、选择题(每小题5分,共60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

C

D

A

D

B

D

B

B

A

C

二、填空题(每小题5分,共20分)

  13、f(x)=2x3-12x         14、           15、2             16、0≤a≤3

三、解答题

17(10分).解:原不等式等价于-----------------------------------2分

--------------------------------------------4分

 

-------------------------------------------------6分

 

-------------------------------------------------8分

综上:   --------------------------------10分

18(12分). 解:(Ⅰ)

                         ----------------3分

      -----------------------------4分

  

的单调区间为     ----------------6分

(Ⅱ)由----------7分

的内角,---------8分

          -------------------10分

     ------------12分

19(12分).解:⑴对任意的正数均有

----------2分

,                 ----------------------------------------4分

是定义在上的单调函数,.     ----------6分

(2)当时,.----------8分

时,

.                 ----------------------------------------10分

为等差数列.

.                      -----------------------------------------12分

20(12分). (1)y==  

     t=2-cosx  ∵x∈[0,) ∴t∈[1,2)         -----------------------------------------3分

     ∴y===t+ -1

     ∵y=t+ -1在t∈[1,2)上为增函数  ∴y∈[1,)     即M=[1,)           6分

  (2)由(x-a-1)(2a-x)>0即 (x-a-1)(x-2a)<0  ∵a<1∴2a<a+1  ∴N=(2a,a+1)    8分

     又∁UM=(-∞,1)∪[,+∞)                                             10分

     要使N⊆∁UM,需a+1≤1或2a≥,得 a≤0或 a≥.                       12分

21(12分).解:对函数求导,得

----------------------------2分

解得

变化时,的变化情况如下表:

x

0

 

0

 

减函数

增函数

                                                ----------------------4分

所以,当时,是减函数;当时,是增函数;

           当时,的值域为   ----------------------------6分

(Ⅱ)对函数求导,得

                                 

    因此,当时,

因此当,g(x)为减函数,从而当时有个g(x)

又g(1)=   ----------------8分

若对于任意,存在,使得,则

[]

              ----------------------------------------10分

式得

式得

故:的取值范围为                 -----------------------------------12分

22(12分). :(1)∵Sn=2an ?n  ∴Sn+1=2an+1 ?(n+1) 两式相减得, an+1=2an+1----------------2分

     数列{an+λ}是等比数列  即: an+1+λ=2(an+λ),∴λ=1.

      ∵a1=s1=2a1-1,∴a1=1 

     ∵数列{ an+1}是首项为2,公比为2的等比数列          ------------------------4分

∴an+1=(a1+1)2n-1=2n,∴an=2n -1                         ------------------------6分

   (2)∵an=2n -1

     ∴bn ====-----------------10分

     ∴Tn=(-)+(-)+…+(-)=1-<1. ----------------12分

 

 

 


同步练习册答案