1.如图.在一通电螺线管内.外三点a.b.c.关于这三点中.磁感线最密处为 查看更多

 

题目列表(包括答案和解析)

 【选做题】本题包括A、B、C三小题,请选定其中两题,并在相应的答题区域内作答。若三题都做,则按A、B两题评分。

A.(选修模块3-3)(12分)

1.下列说法中正确的是(      )

A.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体

B.一定质量气体压强不变温度升高时,吸收的热量一定大于内能的增加量

C.因为扩散现象和布朗运动的剧烈程度都与温度有关,所以扩散现象和布朗运动也叫做热运动

D.液体的表面层就象张紧的橡皮膜而表现出表面张力,是因为表面层的分子分布比液体内部紧密

2.将1ml的纯油酸配成500ml的油酸酒精溶液,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴,则每滴油酸酒精溶液的体积为______ml。现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的直径是_________m(保留一位有效数字)。

3.如图所示,一直立汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁导热良好,开始时活塞被螺栓K固定。现打开螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g

(1)求活塞停在B点时缸内封闭气体的压强p

(2)设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q

 

B.(选修模块3-4)(12分)

(1)下列说法中正确的是(      )

A.眼睛直接观察全息照片不能看到立体图象

B.电磁波和机械波都能产生干涉和衍射现象

C.驱动力频率等于系统固有频率时,受迫振动的振幅最大,这种现象叫共振。

D.在测定单摆周期时,为减小实验误差,最好在小球经过最高点时开始计时

(2)相对论论认为时间和空间与物质的速度有关;在高速前进中的列车的中点处,某乘客突然按下手电筒,使其发出一道闪光,该乘客认为闪光向前、向后传播的速度相等,都为c,站在铁轨旁边地面上的观察者认为闪光向前、向后传播的速度_______(填“相等”、“不等”)。并且,车上的乘客认为,电筒的闪光同时到达列车的前、后壁,地面上的观察者认为电筒的闪光先到达列车的______(填“前”、“后”)壁。

(3)如图所示,某列波在t=0时刻的波形如图中实线,虚线为t=0.3s(该波的周期T>0.3s)时刻的波形图。已知t=0时刻质点P正在做加速运动,求质点P振动的周期和波的传播速度。

 

C.(选修模块3-5)(12分)

(1)下列说法正确的是(      )

A.电子的衍射现象说明实物粒子的波动性

B.235U的半衰期约为7亿年,随地球环境的变化,半衰期可能变短

C.原子核内部某个质子转变为中子时,放出β射线

D.氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增加,电势能减小

(2)2009年诺贝尔物理学奖得主威拉德·博伊尔和乔治·史密斯主要成就是发明了电荷耦合器件(CCD)图像传感器。他们的发明利用了爱因斯坦的光电效应原理。如图所示电路可研究光电效应规律。图中标有A和K的为光电管,其中K为阴极,A为阳级。理想电流计可检测通过光电管的电流,理想电压表用来指示光电管两端的电压。现接通电源,用光子能量为10.5eV的光照射阴极K,电流计中有示数,若将滑动变阻器的滑片P缓慢向右滑动,电流计的读数逐渐减小,当滑至某一位置时电流计的读数恰好为零,读出此时电压表的示数为6.0V;现保持滑片P位置不变,光电管阴极材料的逸出功为________,若增大入射光的强度,电流计的读数________(填“为零”或“不为零”)。

(3)一个静止的,放出一个速度为v1的粒子,同时产生一个新核,并释放出频率为γ光子。写出该核反应方程式,求出这个核反应中产生的新核的速度v2。(不计光子的动量)

 

 

查看答案和解析>>

(1)太阳内部的核聚变可以释放出大量的能量,这些能量以电磁波(场)的形式向四面八方辐射出去,其总功率达到3.8×1026 W.根据爱因斯坦的质能方程估算,单纯地由于这种辐射,太阳每秒钟减少的物质质量约为______kg.(保留一位有效数字)
(2)下面三个高中物理教材中的力学实验:A.验证牛顿第二定律,B.探究功与物体速度变化的关系,C.验证机械能守恒定律,在这三个实验中(选填“A”、“B”、“C”)
①需要使用天平测量物体质量的是______
②需要使用刻度尺测量长度的是______
③需要求物体通过某点瞬时速度的是______
(3)有一根细长而均匀的金属管线样品,横截面如图所示.此金属材料重约1~2N,长约为30cm,电阻约为10Ω.已知这种金属的电阻率为ρ,密度为ρ.因管内中空部分截面积形状不规则,无法直接测量,请设计一个实验方案,测量中空部分的截面积S,现有如下器材可选:
A.毫米刻度尺
B.螺旋测微器
C.电流表(600mA,1.0Ω)
D.电流表(3A,0.1Ω)
E.电压表(3V,6kΩ)
F.滑动变阻器(5Ω,3A)
G.蓄电池(6V,0.05Ω)
H.开关一个,带夹子的导线若干.

①除待测金属管线外,还应选用的器材有______(只填代号字母)
②在图中画出你所设计的实验电路图,并把所选仪器连成实际测量电路.
③实验中需要测量的物理量有:______.(标出对应字母)
④计算金属管线内部空间截面积S的表达式为S=______.

查看答案和解析>>

(1)太阳内部的核聚变可以释放出大量的能量,这些能量以电磁波(场)的形式向四面八方辐射出去,其总功率达到3.8×1026 W.根据爱因斯坦的质能方程估算,单纯地由于这种辐射,太阳每秒钟减少的物质质量约为
 
kg.(保留一位有效数字)
(2)下面三个高中物理教材中的力学实验:A.验证牛顿第二定律,B.探究功与物体速度变化的关系,C.验证机械能守恒定律,在这三个实验中(选填“A”、“B”、“C”)
①需要使用天平测量物体质量的是
 

②需要使用刻度尺测量长度的是
 

③需要求物体通过某点瞬时速度的是
 

(3)有一根细长而均匀的金属管线样品,横截面如图所示.此金属材料重约1~2N,长约为30cm,电阻约为10Ω.已知这种金属的电阻率为ρ,密度为ρ0.因管内中空部分截面积形状不规则,无法直接测量,请设计一个实验方案,测量中空部分的截面积S0,现有如下器材可选:
A.毫米刻度尺
B.螺旋测微器
C.电流表(600mA,1.0Ω)
D.电流表(3A,0.1Ω)
E.电压表(3V,6kΩ)
F.滑动变阻器(5Ω,3A)
G.蓄电池(6V,0.05Ω)
H.开关一个,带夹子的导线若干.
精英家教网
①除待测金属管线外,还应选用的器材有
 
(只填代号字母)
②在图中画出你所设计的实验电路图,并把所选仪器连成实际测量电路.
③实验中需要测量的物理量有:
 
.(标出对应字母)
④计算金属管线内部空间截面积S0的表达式为S0=
 

查看答案和解析>>

第十部分 磁场

第一讲 基本知识介绍

《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。

一、磁场与安培力

1、磁场

a、永磁体、电流磁场→磁现象的电本质

b、磁感强度、磁通量

c、稳恒电流的磁场

*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I 、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB 。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中 k = 1.0×10?7N/A2 。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。

毕萨定律应用在“无限长”直导线的结论:B = 2k 

*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI 

*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI 。其中n为单位长度螺线管的匝数。

2、安培力

a、对直导体,矢量式为 = I;或表达为大小关系式 F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。

b、弯曲导体的安培力

⑴整体合力

折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。

证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为

F = 

  = BI

  = BI

关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。

证毕。

由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)

⑵导体的内张力

弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。

c、匀强磁场对线圈的转矩

如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为

M = BIS

几种情形的讨论——

⑴增加匝数至N ,则 M = NBIS ;

⑵转轴平移,结论不变(证明从略);

⑶线圈形状改变,结论不变(证明从略);

*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα ,如图9-3;

证明:当α = 90°时,显然M = 0 ,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…

⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ ,如图9-4。

证明:当β = 90°时,显然M = 0 ,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…

说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。

二、洛仑兹力

1、概念与规律

a、 = q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。

b、能量性质

由于总垂直确定的平面,故总垂直 ,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。

问题:安培力可以做功,为什么洛仑兹力不能做功?

解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v ,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1 = qv1B的合力(见图9-5)。

很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)

☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?

若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。

2、仅受洛仑兹力的带电粒子运动

a、时,匀速圆周运动,半径r =  ,周期T = 

b、成一般夹角θ时,做等螺距螺旋运动,半径r =  ,螺距d = 

这个结论的证明一般是将分解…(过程从略)。

☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1 ,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?

其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)

3、磁聚焦

a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。

b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。

4、回旋加速器

a、结构&原理(注意加速时间应忽略)

b、磁场与交变电场频率的关系

因回旋周期T和交变电场周期T′必相等,故 =

c、最大速度 vmax = = 2πRf

5、质谱仪

速度选择器&粒子圆周运动,和高考要求相同。

第二讲 典型例题解析

一、磁场与安培力的计算

【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。

【解说】这是一个关于毕萨定律的简单应用。解题过程从略。

【答案】大小为8.0×10?6T ,方向在图9-9中垂直纸面向外。

【例题2】半径为R ,通有电流I的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。

【解说】本题有两种解法。

方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。因为θ 

查看答案和解析>>

 选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)

A.(选修模块3-3)(12分)

⑴下列说法中正确的是  ▲ 

A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力

B.扩散运动就是布朗运动

C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体

D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述

⑵将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是  ▲  m(保留一位有效数字).

⑶如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g

①求活塞停在B点时缸内封闭气体的压强;

②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).

B.(选修3-4试题)

⑴(4分)下列说法正确的是  ▲  

A.泊松亮斑有力地支持了光的微粒说,杨氏干涉实验有力地支持了光的波动说。

B.从接收到的高频信号中还原出所携带的声音或图像信号的过程称为解调

C.当波源或者接受者相对于介质运动时,接受者往往会发现波的频率发生了变化,这种现象叫多普勒效应。

D.考虑相对论效应,一条沿自身长度方向运动的杆,其长度总比杆静止时的长度小

⑵如图所示,真空中有一顶角为75o,折射率为n =的三棱镜.欲使光线从棱镜的侧面AB进入,再直接从侧面AC射出,求入射角θ的取值范围为   ▲  

 

 

⑶(4分) 一列向右传播的简谐横波在某时刻的波形图如图所示。波速大小为0.6m/sP质点的横坐标x = 96cm。求:

①波源O点刚开始振动时的振动方向和波的周期;

②从图中状态为开始时刻,质点P第一次达到波峰时间。

C.(选修模块3-5)(12分)

⑴.氦原子被电离一个核外电子,形成类氢结构的氦离子。已知基态的氦离子能量为E1 =-54.4eV,氦离子能级的示意图如图所示。在具有下列能量的光子中,不能被基态氦离子吸收的是   ▲ 

A.60.3eV          B. 51.0 eV

C.43.2eV          D.54.4 eV

⑵一个静止的,放出一个速度为2.22×107m/s的粒子,同时产生一个新核,并释放出频率为ν=3×1019Hz的γ光子。写出这种核反应方程式   ▲   ;这个核反应中产生的新核的速度为  ▲  ;因γ辐射而引起的质量亏损为  ▲  。(已知普朗克常量h=6.63×10-34J·s)

⑶如图,滑块AB的质量分别为m1m2m1m2,置于光滑水平面上,由轻质弹簧相连接,用一轻绳把两滑块拉至最近,弹簧处于最大压缩状态后绑紧,接着使两滑块一起以恒定的速度v0向右滑动.运动中某时刻轻绳突然断开,当弹簧恢复到其自然长度时,滑块A的速度正好为零。则:

①弹簧第一次恢复到自然长度时,滑块B的速度大小为   ▲

②从轻绳断开到弹簧第一次恢复到自然长度的过程中,弹簧释放的弹性势能Ep =   ▲

 

查看答案和解析>>


同步练习册答案