设数列{an}是递增等差数列.前三项的和为12.前三项的积为48.则它的首项是A.1 B.2 C.4 D.6 查看更多

 

题目列表(包括答案和解析)

(2012•奉贤区二模)数列{an} 的各项均为正数,a1=t,k∈N*,k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)当k=1,p=5时,若数列{an}是成等比数列,求t的值;
(2)当t=1,k=1时,设Tn=a1+
a2
p
+
a3
p2
+…+
an-1
pn-1
+
an
pn-1
,参照高二教材书上推导等比数列前n项求和公式的推导方法,求证:数列
1+p
p
Tn-
an
pn
-6n
是一个常数;
(3)设数列{an}是一个等比数列,求t(用p,k的代数式表示).

查看答案和解析>>

如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(1)设数列{an}是公方差为p的等方差数列,求an和an-1(n≥2,n∈N)的关系式;
(2)若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列;
(3)设数列{an}是首项为2,公方差为2的等方差数列,若将a1,a2,a3,…,a10这种顺序的排列作为某种密码,求这种密码的个数.

查看答案和解析>>

如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(1)设数列{an}是公方差为p的等方差数列,求an和an-1(n≥2,n∈N)的关系式;
(2)若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列;
(3)设数列{an}是首项为2,公方差为2的等方差数列,若将a1,a2,a3,…,a10这种顺序的排列作为某种密码,求这种密码的个数.

查看答案和解析>>

如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(1)设数列{an}是公方差为p的等方差数列,求an和an-1(n≥2,n∈N)的关系式;
(2)若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列;
(3)设数列{an}是首项为2,公方差为2的等方差数列,若将a1,a2,a3,…,a10这种顺序的排列作为某种密码,求这种密码的个数.

查看答案和解析>>

数列{an} 的各项均为正数,a1=t,k∈N*,k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)当k=1,p=5时,若数列{an}是成等比数列,求t的值;
(2)当t=1,k=1时,设Tn=a1+++…++,参照高二教材书上推导等比数列前n项求和公式的推导方法,求证:数列是一个常数;
(3)设数列{an}是一个等比数列,求t(用p,k的代数式表示).

查看答案和解析>>


同步练习册答案