题目列表(包括答案和解析)
| AB |
| a |
| CD |
| a |
| AD |
| BC |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 2n |
| x |
| 1-x |
| 1 |
| 2 |
| bn | ||
|
| λ |
| an |
| b5 | ||
|
| λ |
| a5 |
| 1-x2 |
| 1+x2 |
| 1 |
| 2 |
| (x1-x2)2 |
| x1x2 |
| (x2-x3)2 |
| x2x3 |
| (xn+1-xn)2 |
| xnxn+1 |
| ||
| 8 |
(本小题满分14分)
已知数列
的前
项和
,且
.
(1)求数列{an}的通项公式;
(2)令
,是否存在
(
),使得
、
、
成等比数列.若存在,求出所有符合条件的
值;若不存在,请说明理由.
已知在等比数列
中,
,且
是
和
的等差中项.
(1)求数列
的通项公式;
(2)若数列
满足
,求
的通项公式
.
(12分)设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<S
成立;
(3)是否存在常数k和等差数列{an},使ka
-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com